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1. Summary

This report describes the current work in progress for the SAGA project.

highlights of the research in the last six months are:

The

Clemma, an automated configuration librarian, is undergoing development.

Clemma will provide configuration management and version control capabilities for

the SAGA system. Clemma is being implemented using the Troll database and the

UNIX file system. A prototype of Clemma will be completed in the Fall of 1986.

• GNU Emacs as an alternative user interface for the Epos editor.

• A formal foundation for the stepwise development of software components includ-

ing a formal model for the stepwise development of verified programs and an exam-

ple of a stepwise development method which falls within the framework of the for-

mal model.

• A survey of software management techniques in AT&T.

• A design for a project management utility for SAGA.

• An implementation of the Cocomo cost model in a software package.

• A prototype implementation of ENCOMPASS written in a combination of C, Csh,

P rolog and Ada.

• Simple implementations of the project management and configuration control sys-

tems in the ENCOMPASS prototype supporting "programming in the small".

• An initial version of ISLET, the language-oriented editor used to create PLEASE

specifications and refine them into Ada implementations.

• An initial version of the software which automatically translates PLEASE

specifications into Prolog procedures and generates the support code necessary to

call these procedures from Ada.

• The run-time support routines and axiom sets for a number of pre-defined types in
ENCOMPASS.

• Interfaces to the ENCOMPASS test harness and TED.

• PLEASE features to support if, while, and assignment statements, as well as pro-

cedure calls with in, out or in out parameters.

• PLEASE features to support a small, fixed set of types including natural numbers,

lists, booleans and characters.

• PLEASE and ENCOMPASS use to develop small programs, including specification,

prototyping, and mechanical verification.

Appendix A contains a list of twenty theses and papers that document the project.

Six of these were produced since the last mid-year report. Appendices B through P con-

tain reports, thesis proposals, papers, and other work produced as part of the NASA

project.

!
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2. Overview

Large scale software development is so expensive that new techniques and methods

are required to improve productivity. The software development environment is a pro-

posed solution in which software development methods and paradigms are embedded

within a computer software system. The goal of an environment is to provide software

developers with a computer-aided specification, design, coding, testing and maintenance

system that operates at the level of abstraction of the software development process and

the application domains of its intended products.

Proposed software development environments range from simple collections of software

tools that enhance the development process to complex systems that support sophisti-

cated software production methods. Every environment must include a representation

for the eventual software products and a, perhaps informal, notion of the software

development process. In the SAGA project, we ha_:e been investigating the principles

and practices underlying the construction of a software development environment. In

this report, we review our studies and results and discuss the issues of providing practi-

cal environments in the short and long term.

Research into software development is required to reduce the cost of producing

software and to improve software quality. Modern software systems, such as the embed-

ded software required for NASA's space station initiative, stretch current software

engineering techniques. The requirements to build large, reliable, and maintainable

software systems increases with time. Much theoretical and practical research is in pro-

gress to improve software engineering techniques. One such technique is to build a

software system or environment which directly supports the software engineering pro-

cess. In this report, we will describe research in the SAGA project to design and build a

software development environment which automates the software engineering process.

The design of a computer-aided software development environment should be

guided by the problems that arise in manual software development methods. Many of

these problems are reflected in software cost estimation models and measurements.

Software costs are very sensitive to mistakes in the early requirements and design phases

of development. Programmers and program testers vary greatly in the productivity and

quality of their work. However, high-level languages and software tools to support

development may increase the productivity of a programmer. Orders of magnitude

improvement in the productivity of software engineers might be achieved in many appli-

cation areas if the products of software engineering can become reusable, that is, if the

requirements, design, documentation, validation, and verification of a software system

can be reused in maintenance and in building new systems.

The SAGA project is investigating the design and construction of practical software

engineering environments for developing and maintaining aerospace systems and applica-

tions software. The research includes the practical organization of the software lifecycle,

configuration management, software requirements specification, executable specifications,

design methodologies, programming, verification, validation and testing, version control,

maintenance, the reuse of software, software libraries, documentation and automated



I

I
I
I
I

I

I

|
I

I
I

I
i

I
I

I
i

I
i

SAGA Project 1986 Mid-year Report

management. An overview of the SAGA project components is described in Appendices

C and D.

In several of the papers we have produced, we argue for research into formal models

of the software development process (Appendices D, F, G, and H.) Such formal models

should aid experimental evaluation of the practical techniques that are used in the con-

struction of software development environments.

The SAGA project is developing models of configuration, design, incremental

development, and management. The concepts and tools resulting from SAGA are being

used to develop a prototype software development system called ENCOMPASS (Appen-

dices I and B2). Although the research has developed many general tools and concepts

that are independent of the application language and domain, we hope to extend

ENCOMPASS to support the development of large, embedded software systems written

mainly in ADA.

In the remainder of this report, we describe in more detail the work accomplished

this year.

3. Encompass

An initial prototype of the ENCOMPASS environment has been constructed on a

Sun workstation running Unix 3. The system uses the Verdix Ada 4 Development System

as well as many tools developed by the SAGA project. The prototype contains simple

facilities for configuration control and project management and has a uniform, object-

oriented user interface. From ENCOMPASS, the user can invoke IDEAL (Incremental

Development Environment for Annotated Languages) which provides facilities for speci-

fying, prototyping, testing and implementing Ada programs.

IDEAL implements a development methodology' similar to VDM. Procedures are

first specified using pre- and post-conditions written in a subset of first order predicate

logic. These specification can be automatically transformed into prototypes written in a

combination of Ada and Prolog. ENCOMPASS provides tools that support the creation

of acceptance tests using these prototypes. To create and refine specifications, the pro-

grammer uses ISLET (Incredibly Simple Language-oriented Editing Tool) an incremen-

tal, language-oriented editor specifically for incremental refinement of the PLEASE

language.

Using ISLET, the PLEASE specification is incrementally refined into an Ada pro-

gram. This process is viewed as the construction of a proof in the Hoare Calculus. Each

refinement is verified before another is applied; therefore, the final program satisfies the

original specification. Verification conditions are generated from each refinement step.

ISLET can certify many VCs using algebraic simplifications and simple proof pro-

cedures. If these measures fail, ISLET invokes TED as an interface to a general purpose

2 B contains an early description of our work.

Unix is a trademark of AT&T

4 Ada is a trademark of the United States government.
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theorem prover.

Appendices B and I report more fully on PLEASE and ENCOMPASS. Appendix I

contains Bob Terwilliger's Ph.D. Preliminary proposal and two supporting papers. The

PLEASE paper in Appendix B has been presented at a conference. Appendix J contains

a thesis by Phillip Roberts on the translation of predicates to Prolog.

4. Configuration Control

A prototype configuration librarian, Clernma, is currently under development.

The goal of the system is to provide a means of organizing, indexing and storing the

on-line components of software projects. Users will be able to store both individual files

and hierarchies of files as configuration items in the library. An overview of some of the

issues involved in configuration management and a description of a small Sag a prototype

can be found in the ENCOMPASS paper in Appendix I.

Because (as Nestor pointed out in a recent CMU technical report) there are many

deficiencies with using just a file system or data base to represent components of a

software development, we have adopted a combined approach in which both a data base

and a file system are used. The deficiencies of traditional data bases and file systems for

representing components of software development has been known for some time and

several projects are attempting to implement persistent object storage (a French Esprit

project is already implementing such a data base under Unix). It is unclear, as of this

moment, whether these attempts will be successful.

Our approach of combining data bases with file systems has the advantage that it

does permit the rapid prototyping of many of the facilities which are needed. It also

obviates the need to construct a complex piece of Software, at least until the perfor-

mance characteristics of persistent object storage are better understood.

Clemma will provide several capabilities:

• Baselines of software modules can be recorded and updates can be tracked and used

to form new baselines.

• Stored modules can be checked out for re-use, with access lists provided to handle

problems of permission and change control.

• A browser will be incorporated so that users may more easily find useful modules in

the library. This should greatly promote software re-use.

• "Views" of modules will be implemented as hierarchical groupings of stored

configuration items. This will greatly aid testing, validation and re-use of software

systems.

• By placing constraints on the state of items checked into the library (whether an

item is fully documented, tested, etc.) one will be able to implement a development

methodology for the software, and control the construction and use of individual

components.

The system will be written primarily in the C programming language, and will use

the Troll DBMS and Unix 'T_ file system for support. The current prototype of Clemma
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is expected to be completed in the Fall of 1986.

Appendix M contains an early draft of Clemma's design, a more detailed document

is being prepared. As of September, major parts of Clemma have been programmed.

5. The Epos Editor

Peter Kirslis completed the major parts of the Epos editor and finished his Ph.D.

which is included as Appendix E. He is continuing development of a SAGA-based editor

in his current employment at AT&T in Denver. His new editor will be based on Lex and

Yacc and an internal AT&T editor interface. George Beshers regular-right part gram-

mar based Olorin editor generator system is near completion. George is currently revis-

ing his Ph.D. thesis having passed the oral examination.

The prototype user interface to the Epos editor became the major obstacle to

deploying Epos for practical software development. In order to facilitate the integration

of several Saga utilities, we decided to adopt the GNU Emacs extensible editor as the

front end user interface. The EPOS incremental parser, the incremental semantics pro-

cessor, and other Saga utilities may now be added to the G.N_" Emacs environment as

background processes which will communicate with each other through Emacs. Each

pair of communicating processes requires an interface which is programmed in the GNU

Emacs extension language, ELisp.

The interface between GNU Emacs and the incremental parser has been completed.

GNU Emacs itself was changed to pass all text changes to the interface. The interface

collects these changes within local regions, and eventually passes them on to the incre-

mental parser. Parsing errors are signalled with an error message and the unparsed text

is highlighted. Highlighting required another, more difficult change to GNU" Emacs.

User commands which need to look at the parse tree, such as token movement or tree

selection, ask the parser to return the appropriate information.

A number of modifications were made to the Epos incremental parser to allow it to

be used with the Emacs front-end. The primary task was to extract the parser from the

Epos editor and to develop an interface of primitive commands to be used by Emacs.

The parse tree representation was upgraded to allow arbitrary text to be stored in

the tree (including tabs and trailing blanks). Standard Pascal multi-line comments are

now supported, although a change of the termination of a comment is not yet properly

reparsed. Also added was a module to allow selection and modification of a range of the

parse tree for use by the editor. A number of previously-existing bugs in the parser

were revealed and fixed while developing this new interface. Appendix L contains a

description of the new GNU EMACS-based Epos.

6. Software Engineering Management

We wish to automate much of the control, communications, and tracking that is

associated with the products involved during the lifetime of a software system. To date,

we have been looking at various global pictures of the software lifetime to determine

what management structures are used and what they require to be used effectively. We

would like the management tool to support most management structures of workers
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(including managers) and documents (including program and management).

Appendix O contains a summary of management techniques used in ATg,:T Middle-

town to support the software for System 75, the digital telephone exchange. The sum-

mary was collected by Bob Sum on a visit to AT&T. The summary is being correlated

with the various NASA proposed lifecycle tasks. We have also being studying other pro-

posed project management systems. As part of these studies, Professor Campbell

attended the Lancaster Software Environments conference, Trondheim Software

Engineering conference, and RADC KPSA meeting. The most advanced of project

management systems appear to be that of the Carnegie Group Inc., the Kestrel Institute,

Boeing, and TRW. It is clear from these studies that there still remains much to be

done to integrate project management with the other activities in software development

and that most systems remain primitive or are prototypes.

In Appendix C, Campbell and Terwilliger discuss the notion of tasks being passed

between the in trays and out trays of software developers. That paper begins to address

the problem of interrelating project management with configuration control and other

SAGA tools. Project management and configuration control interaction have also been

prototyped as part of ENCOMPASS and a description of this work can be found in the

ENCOMPASS paper in Appendix I. In particular, the need for a finer granularity of

milestone is discussed. Further extension of these ideas that should form part of an

eventual management tool may be found in Appendix N.

Work is now progressing on developing an implementation of these ideas. This

work will build upon Clemma and earlier designs for the project management system.

7. A Model for Stepwlse Development of Programs

The task of specifying and designing a software a software component and verifying

that the component satisfies a given specification is quite difficult. An approach which

makes this task more manageable is to divide the development of a software component

into a series of steps. At each step the following occur:

(1) The software component is specified. At each step after the first, the specification

is an augmentation of the specification at the preceding step.

(2) Design decisions which are consistent with design decisions at preceding steps are
made.

(3) It is determined that the (possibly incomplete) software component satisfies its

specification.

The Vienna Development Method (VDM) [Jones, 80] is an example of such a stepwise

development method.

In order to study the properties of a particular stepwise development method or to

compare different stepwise development methods, it would be advantageous to have a

formal model for the stepwise development process. In addition, any attempt to auto-

mate this process would benefit from formalizing the notions involved. A formal model

has been constructed and is described in some detail in Appendix H. More concise state-

ments of the model will be found in Appendices F and G. It is conceptually simple and

independent of both the specification method used and the method used for determining
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that a software component satisfies its specification. It contains formal definitions for

such basic ideas as a development, a correct development, a development step, and a

correct development step.

The model has been used in the study of an example of a stepwise development

method. The example is a method for the stepwise development of programs which are

verified to be partially correct with respect to specifications. The specifications are

expressed in terms of pre- and post-conditions. The model has been most helpful in the

construction of the example. In one case, the requirements of the model were met in the

example because of the soundness and relative completeness of the Hoare calculus. If the

example is viewed apart from the model, it is not obvious that these properties of the

Hoare calculus are needed. The model was also useful in modifying the Hoare calculus,

which is a method for program verification, into a stepwise verification method for

software components.

A description of the formal model and results concerning the properties of the

model have been obtained. An example of a stepwise development method based upon

the Hoare logic and calculus has been studied in detail. It has been prOved that this

development method has the properties of the formal model. The details of this model,

the results, and examples are given in the Appendices.

8. Comparison Tools and Software Environments

Carol Beckman has continued her studies into the uses of differences in software

development. Her Ph.D. preliminary thesis proposal surveys differencing techniques and

discusses the various approaches she is investigating to improve the use of these methods
o

in software development environments (see Appendix K.)

9. A COCOMO cost estimating package

As part of a Software Engineering course during the Spring of 1986, Professor

Campbell's students implemented a cost estimating package for software development

based on Barry Boehm's COCOMO model. Documentation of the package is included in

Appendix P.

!
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Abstract

PLEASE is an executable specification language which supports program development by incre-

mental refinement. Software components are first specified using a combination of conventional

programming languages and mathematics. These abstract components are then incrementally
refined into components in an implementation language. Each refinement is verified before

another is applied; therefore, the final components produced by the development satisfy the origi-

nal specifications. PLEASE allows a procedure or function to be specified using pre- and post-

conditions written in predicate logic and an abstract data type to have a type invariant.

PLEASE specifications may be used in proofs of correctness, and may also be transformed into

prototypes which use Prolog to %xecute" pre- and post-conditions. The early production of exe-

cutable prototypes for experimentation and evaluation may enhance the development process.

1. Introductlon

It is widely acknowledged that producing correct software is both difficult and expensive. To help

remedy this situation, methods of specifying[13,19,20,20,29,31] and verifying[14,10,19,27,38] software have

been developed. The SAGA (Software Automation, Generation and Administration) project is investigat-

ing both the formal and practical aspects of providing automated support for the full range of software

engineering activities[2,6,8,15,23,35]. PLEASE is a language being developed by the SAGA group to sup-

port the specification, prototyping, and rigorous development of software components. In this paper we

describe the development methodology for which PLEASE was created, give an example of development

using the language, and describe the methods used to prototype PLEASE specifications.

A life-cycle model describes the sequence of distinct stages through which a software product passes

during its lifetime[10]. There is no single, universally accepted model of the software life-cycle[3,40]. The

IThis research is supported by NASA grant NAG 1-138.

1



stagesof the life-cyclegeneratesoftware components, such as code written in programming languages, test

data or results, and many types of documentation. In many models, a specification of the system to be

built is created early in the life-cycle; as components are produced they are verified[lO] for correctness with

respect to this specification. The specification is validated[lO] when it is shown to satisfy the customers

requirements.

Producing a valid specification is a difficult task. The users of the system may not really know what

they want, and they may be unable to communicate their desires to the development team. If the

specification is in a formal notation it may be an ineffective medium for communication with the custo-

mers, but natural language specifications are notoriously ambiguous and incomplete. Prototyping[12,24]

and the use of executable specification languages[21,22,29,41] have been suggested as partial solutions to

these problems. Providing the customers with prototypes for experimentation and evaluation early in the

development process may increase customer/developer communication and enhance the validation and

design processes.

To help manage the complexity of software design and development, methodologies which combine

standard representations, intellectual disciplines, and well defined techniques have been pro-

posed[17,19,37,39]. For example, it has been suggested that top-down development can help control the

complexity of program construction. By using stepwise refinement to create a concrete implementation

from an abstract specification we divide the decisions necessary into smaller, more comprehensible groups.

Methods to support the top-down development of programs have been devised[19,32] and put into use[34].

It has also been proposed that software development may be viewed as a sequence of transformations

between specifications written at different linguistic levels[25]; systems to support similar development

methodologies have been constructed[30}.

The Vienna Developmcnt Method[19,34] supports the top-down development of programs specified

in a notation suitable for mathematical verification. In this method, programs are first written in a

language combining elements from conventional programming languages and mathematics. A procedure

or function may bc specified using pre- and post-condition8 written in predicate logic; similarly, an invari-
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ant may be specified for a data type. Then these abstract program8 are incrementally refined into pro-

grams in an implementation language. The refinements are performed one at a time, and each is verified

before another is applied; therefore, the final program produced by the development satisfies the original

specification.

Path Pascal[7] is an extension to standard Pascal allowing concurrent programming and encapsu-

lated data types. In Path Pascal, a proce_6 is a program structure which has an independent thread of

execution; independently executing processes communicate through shared data structures. Encapsulated

data types called objects are manipulated only by the predefined routines associated with the type. Path

expressions[4,5] specify synchronization constraints that apply to the execution of the processes, functions

and procedures within objects.

PLEASE is an extension of Path Pascal, which supports a methodology similar to the Vienna

Development Method. In PLEASE, a procedure or function may be specified with pre- and post-

conditions written in predicate logic, and similarly an object may be specified using an invariant. For ease

of expression, several data types have been added to the language. PLEASE specifications may be used in

proofs of correctness; they also may be transformed into prototypes which use Prolog[9] to "execute" pre-

and post-conditions, and may interact with other modules written in conventional languages. We believe

that the early production of executable prototypes for experimentation and evaluation will enhance the

software development process.

In section two of this paper, we describe the development methodology PLEASE was designed to

support, and in section three, we give an example of program development using PLEASE. First we dis-

cuss an example program specification and describe how an executable prototype could be created for it.

Then we show a refinement of this specification and discuss the process of verifying that the refined

specification satisfies the original. In section four, we give an example of data type specification in

PLEASE, and in section five, we discuss the implementation of the system. In section six, we describe the

work we have planned for tile future and in section seven, we summarize and draw some conclusions from

our experience.

8



2. Incremental Program Development

Figure 1 shows a view of the life-cycle model which PLEASE was designed to support; a different

perspective is given in[35]. In our model, a customer comes to a software development team to have a sys-

tem constructed. In the requirement8 definition phase, the functions and properties of the software to be

produced by the development are determined[10]. A systems analyst produces a 8oftware requirement

speeifieation[lO], which precisely describes each requirement of the software to be produced. In our model,

software requirements specifications are a combination of natural language and components specified in

PLEASE. PLEASE specifications may be transformed into prototypes which can be used for experimenta-

tion and evaluation; they are also formal specifications of components to be produced which can be used

throughout the rest of the llfe-cycle. By providing executable components early in the development pro-

cess, errors in the requirements specification may be discovered and corrected before the internal structure

of the system has been defined.

Although a software system may be shown to meet the specification, this does not imply that the sys-

tem satisfies the customers requirements. The validation pha8e attempts to show that any system which

satisfies the specification will also satisfy the customers requirements, that is, that the requirements

specification is valid. If not, then the requirements specification should be corrected before the develop-

ment proceeds any further. In this phase the systems analyst interacts with the users to produce the 8ys-

tern validation summary[35], which describes the customer's evaluation of the software requirements

specification.

To aid in the validation process, the PLEASE components in the specification may be passed to a

prototypin9 expert who transforms them into executable prototypes which satisfy the specifications. These

prototypes may be used by the systems analyst in his interactions with the customers; they may be sub-

jected to a series of tests, be delivered to the customers for experimentation and evaluation, or be installed

for production use on a trial basis. The use of prototypes may increase customer/developer communica-

tion and enhance the validation process. If it is found that the specification does not satisfy the customers,

then it is revised, new prototypes are produced, and the validation process is reinitiated; this cycle is
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repeated until a validated specification is produced.
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The validated specification then undergoes a refinement, or design transformation, in which more of

the structure of the system is defined and implemented. This phase produces a software design

8pecification[lO], which provides a record of the design decisions made during the transformation. During

the transformation, prototypes produced from PLEASE specifications may be used in experiments per-

formed to guide the design process. The design transformation may produce components in the implemen-

tation language Path Pascal as well as an updated requirements specification. Components which have

been implemented need not be refined further, but components which are only specified will undergo

further refinements until a complete implementation is produced.

Although a new specification has been created, it's relationship to the original is unknown. Before

further refinements are performed, a verification phase must show that any implementation which satisfies

the lower level specification will also satisfy the upper level one. In our model, this may be accomplished

using any combination of mathematical reasoning[14,19,27,38], testing[ll,18,28], technical review[38], and

inspection. The use of PLEASE specifications enhances the verification of system components using either

testing or proof techniques. The specification of a component can be transformed into a prototype. This

prototype may be used as a test oracle against which the implementation can be compared. Since the

specification is formal, proof techniques may be used which range from a very detailed, completely formal

proof using mechanical theorem proving to an argument presented as in a mathematics text. PLEASE

provides a framework for the rigorous[19] development of programs. Although detailed formal proofs are

not required at every step, the framework is present so that they can be constructed if necessary. Parts of

a project may use detailed formal verification while other, less critical parts may be handled using less

expensive techniques.

To clarify our model further and show how PLEASE specifications enhance the development process,

we will consider an example of system development. We will follow the development through requirements

definition, validation of the original requirements specification, a single refinement step, and verification of

the dcsign transformation.

8
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8. An Example of Program Development

Assume that a customer needs a program which sorts a list of integers. The program should read the

llst from input, produce a sorted list which is a permutation of the original, and write the sorted list to

output. A pre-existing module implementing lists of integers is to be reused. In the requirements

definition phase, the customer discusses his needs with the systems analyst and a requirements specification

is produced. Along with other documentation, this specification might contain a sort program specified in

PLEASE.

8.1. Speclfylng a Program

Figure 2 shows a PLEASE specification for such a program. The specification uses the component

integer_.list.spec which specifies the module integer__list 2. This module uses the PLEASE type list to define

the type integer_list as lint of integer. In PLEASE, as in Lisp or Prolog, lists may have varying lengths

and there is no explicit allocation or release of storage. However, in PLEASE the strong typing of Pascal

is retained and all the elements of a list must have the same type. In PLEASE, a list is denoted by a

comma separated list of elements surrounded by _ and _. The function hd(L) returns the first element in

a list L and the function tl(L) returns L with the first element removed. The function ' L I I I L e yields the

concatenation of the elements of L 1 and L_, and the constant empty_list denotes a list containing no ele-

ments.

The specification for the sort program defines the predicates permutation and sort, as well as giving

pre- and post-conditions for the program. In PLEASE, a predicate defines a logical expression which can

be used elsewhere. It syntactically resembles a procedure and may contain local type, variable, function or

predicate definitions. The predicate permutation states that two lists are permutations of each other if

both of the lists are empty, or if the first element in the second llst is in the first list, and the remainder of

the two lists are permutations of each other. The predicate sorted states that a list is sorted if it is empty,

or if the first element in the list is the smallest and the rest of the list is also sorted. This predicate may be

_The statement #include "integer._list.spee" instructs a pre-processor to include text from the file integer_Jist.spec
into the specification before further processing.
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program sort(input, output) ;

#include "integer_list.spec"

var Input_list, oubput_list:integer_list;

predicate permutation(listl, list2:integer_list) ;

vat front, back:integer_list;

begin

end;

(lls%l = empty_list) and (ils%2 = empty_list)

or

(lis%l : front [l < hd(list2)> _] back) and

permutation(front I back, tl(lis%2))

predicate sorted(l:integer list)

vat x:integer;

begin

end ;

(i = empty_list)
or

forall( x.I member(x,_l(1)),x >= hd(1)) and

sor%ed(tl(1))

pre_condition;

begin

%ex% %0 integer_lls%(inpu%) <> in%eger list error

end;

pos%_condltion ;

begin

(input_list = text to integer_list(input)) and

permutation(input list, output_list) and

sorted(output_list) and

(output_list = text to integer_list(output'))

end;

begin
end.

Figure 2. Specification of Sort Program
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read as, a list L is sorted if L is empty, or, if for all Xsuch that Xis a member of the tail of L, Xis greater

than or equal to the head of L, and the tail of L is sorted.

In PLEASE, the pre-condition for a program specifies the conditions that the input data must meet

before execution begins. The post-condition specifies the conditions, possibly relative to the input, that
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the output must meet after execution has been completed. The pre-condition for the program 8ort

specifies that the input file must contain the text representation for a valid list of integers. The function

text_to_integer_list projects from objects of type text onto objects of type iateger._li6t, and returns the con-

stant integer._list_error for inputs which are not valid. The post-condition for sort states that when the

input and output files are projected onto integer_lists, the output is a permutation of the input and the

output is sorted. The notation output' denotes the value of output after the program has executed, while

output denotes the value before execution begins.

After the requirements specification has been created, it must be validated. The systems analyst can

discuss the specification with the customer and obtain test data and expected results for the system. The

PLEASE specification then can be given to an expert prototyper, who can produce a prototype which

satisfies the specification. If the prototype performs correctly on the test data it can be delivered to the

customer for evaluation. If the prototype does not perform correctly, then we know the specification is

invalid 3.

3.2. Prototyplng the Specification

Figure 3 shows a simplified version of the Prolog code which might be produced from the

specification of the sort program by an expert prototyper. There are Prolog procedures for the predicates

permutation and sort, as well as for the program pre- and post-conditions and the program as a whole.

The procedure sort simply reads the input, executes the pre-condition, executes the post-condltlon, and

then writes the output. The notion of execution is quite different for pre- and post-conditions. Executing

a pre-condition involves checking that given data satisfies a logical expression; for example,

sort_pre_condition simply checks that the function text_to_integer_list does not return the error indication

when called with the input to the program. Executing a post-condition means finding data that satisfies a

logical expression; for example, sort_post_condition must find a value for the output such that when the

= Note that if the prototype does satisfy the customer, we know only that a particular implementation does so.
This does not necessarily mean that all implementations which satisfy the specification would be considered adequate
by the customer. While prototypes may enhance the validation process, they do not replace communication with cus-
tomers and review of the specification.
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permutatlon( [],[] ).

permutation (Llstl, [Head2 ITail2] ) :-

append (Front, [Head2 IBack] ,Llstl ),

append (Front,Back,Temp),

permutation (Temp,T_il2)

sorted

sorted

(El).
(L) :-

tl (L,Tall),

hd (L,Head),
fora11(member(X,Tail),(X >= Head)),
sorted (Tail)

sort_pre condition(Input):-
not(text to integer_llst(Input,integer_list_error))

sort_post_condition(Input,Output) :-
text to integer_list(Input,Input_list),

permutation(Input_list, Output list),

sorted(Output_list),

text to integer_list(Output,Output_list)

SOFt :-

read(Input),

sort_pre_condition(Input),

sort_post_condltion(Input,Output),

write(Output)

Figure 3. Prolog Code Produced from Sort Specification
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input and output are projected to lists of integers, the input and output are permutations of each other

and the output is sorted.

To accomplish this, sorL_post_condition converts the input data from text form, performs a naive

sort, and converts the output back to text. The procedure permutation functions as a generator and the

procedure 8orted as a selector. When sort_post_condition is invoked text_to_integer_list is called to convert

from text to lists of integers, permutation is called to generate a permutation of the input list, and then

sorted is then called to determine _[ the permutation is sorted. If sorted fails, then execution backtracks
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and permutation generates the next permutation to be evaluated. This continues until a sorted permuta-

tion is generated. At this point sorted succeeds, tezt_to_integer_list is called to convert the output to text

format, and sort_post_condition returns.

Although this program produces a sorted list of integers it's performance will be quite poor; in the

worst case, all the permutations of the input list will be generated and tested. The performance could be

improved by substituting a pre-existing procedure which implements a superior sorting algorithm for the

section of sort_post_condition which actually performs the sort. A prototyping expert might search

libraries of specifications and prototypes to find reusable components which would improve the perfor-

mance of the prototype under construction. A prototype with better performance characteristics might be

subjected to more extensive testing and evaluation before further design transformations are applied.'

After the specification for sort has been validated, it can be transformed into a more concrete form.

8.3. Refining the Speclficatlon

Assume that a decision is made to implement the program using the quicksort algorithm. As a first

step, the original specification might be refined to produce a PLEASE program which converts the input

from text to lists of integers, calls a procedure 8oft to produce a sorted list, converts this llst to text, and

'hen writes the text to output. Figure 4 shows the specification of the procedure sort which would be used

in such a program. This procedure takes a list of integers as input and produces a sorted list as output.

First, an element is selected from the input llst and the list is partitioned into two sublists, low and high,

so that all the members of low are less than the selected element and all the members of high are greater.

The lists high and low are then sorted recursively and the results combined to form a sorted permutation

of the input.

Although this refinement has narrowed the possible implementations to those using the quicksort

algorithm, there are still many design decisions left unmade. The new specification may be refined into a

family of quicksort programs; these programs might differ in many characteristics, but all would satisfy

the specification. For example, the specification for the procedure select only requires that element be a

member of list; the algorithm used to select a particular element is not specified at this level of abstraction.

11
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procedure sort(input : integer_list ; var output : integer_llst) ;

var element:integer;

less, greater, sorted_high, sorted_low :integer_list;

procedure select(input:integer_list, vat element :integer) ;

pre_condition;

begin true end;

post_condition ;

begin member(element, input) end;

procedure partltion(llst:integer_llst ;element:integer;

var low, hlgh:integer_llst ) ;

pre_condition;

begin member(element, list) end;

post condition;

var l,h: integer ;

begln

permutation(list, low II < element > el high) and

forall( 1 I member(l, low), 1 <= element ) and

forall( h l member(h, high), h >= element)

end;

procedure combine(sorted_low :integer_list ;element:integer;

sorted_high : integer_list ; var output :integer list) ;

pre_condltion ;

begin true end;

post_condition;

begln output' = sorted_low I[ element II sorted_high end;

pre_condition;

begin true end;

post_condltlOn ;

begin permutation(input, output) and sorted(output) end;

begin

end;

(* sort *)

if (input = empty_list) then output:= empty list

else begln

select(input, element) ;

partition(input, element, low, high) ;

sort(low, sorted low);sort(hlgh, sorted_hlgh) ;

comblne(sorted_low, element, sorted_high, output) ;

end;

(* sort *)

Figure 4. Part of Refinement of Sort Specification
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Similarly, the specification for partition only states that all the elements in low are less than or equal to

element and all the elemcnts in high are greater than or equal to element; it says nothing about the
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algorithm used to produce these lists. As the specification is refined further these algorithms will be

defined, thereby narrowing the acceptable implementations. The data types used may undergo refinement

as well as the algorithms; for example, the module integer._list may be refined to use an array instead of a

list representation. However, before the new specification is refined further, it must be shown that any

program which satisfies the new specification will also satisfy the original.

3.4. Verifying the Refinement

A number of different methods may be used to show that the refined specification satisfies the origi-

nal. In the most informal case, inspection of the original and refined specifications by a senior designer, or

some type of peer review process might be used. A more rigorous approach might run prototypes pro-

duced from the original and refined specifications on the same test data and compare the results; this

method gives significant assurance at low cost. However, in the words of E. W. Dijkstra, "Program testing

can be used to show the presence of bugs, never to show their absence." In the most rigorous case,

mathematical reasoning would be used.

The Vienna Development Method[19] provides rules that can be used to generate verification condi-

tions for a refinement. If the verification conditions are always true, then any implementation which

satisfies the refined specification will also satisfy the original. Figure 5 shows the verification rules for

sequential and conditional statements. Pre_OP i (a] is the pre-condltion for OP i ; a represents the parame-

ters, explicit or implicit, to the pre-condition. Each OP i is verified separately. Rule di guarantees that if

the pre-condition for OP is true before the sequence begins execution and OP 1 through OPi_ 1 execute

correctly, then the pre-condition for OP i will be true. Rule rl guarantees that if OP 1 through OP n execute

correctly, then the post-condltion for the entire sequence will be true.

To generate verification conditions, the appropriate pre- and post-conditions are simply substituted

into the verification rules. For example, to generate verification conditions for the sort procedure, the rule

for conditional statements is applied first; the expression

i_put ---- empty_list

13
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FOr OP -= OP_

dl.

d2.

d3.

dn.

rl.

; Op 2 ; . . . ; OP n to be correct, show :

pre_OP(_) => pre_OPl(_)

pre_OP(_ I) and post 0PI(_I,_ 2) =>

pre_OP2(_ 2)

pre OP(a I) and post_OP1(al,a 2) and

post_OP2(_2,_3) => pre_OP3(a 3)

pre_OP(a I) and post_OP1(_l,a 2) and

post_OP2(_o,(r 3) _md ... and

post_OP(,,_ t)(an -z'an) => pre-OPn(an)

pre_OP(_ 1) and post_OP1(_1,a 2) and

post_OP2(e2/, 3) and ... and

post_OPn(_n,_ n•i) => post_OP ((71,rrn* i)

For OP = IF e

da.

(:lb.

ra.

rb.

THEN OP I ELSE OP 2 to be correct,, show :

pre_OP (_) and eval (e, _) => pre_OP i(a)

pre_OP(a) and not eval(e._) => pre_OP2(_)

pre_OP(a I) and eval(e,al ) and

post_OPl(at,a 2) => post_OP (al,a2)

pre_OP(_ 1) and not eval(e,a 1) and

post_OP2(at,_ 2) => post_OP (al,a2)

Figure 5. Verification Rules for Sequential and Conditional Statements

is substituted for e,

for OP I , and

for OPt.

output := empty_list

begin select(input, element) ; ... end

Pre- and post-conditions for the begin ... end block then are generated to facilitate the proof.
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The rule for sequential statements then is applied with begin ... end substituted for OP, select(...) for OP_,

partition(...) for OP_, sort(low, sorted_low) for ORs, sort(high, sorted_high)for OPt, and combine(...) for

OP 5. If the formulae produced by these substitutions are always true, then any implementations of select,

partition, and combine which satisfy the appropriate pre- and post-conditions will produce a correct

implementation of sort.

Automated tools may be used to perform the appropriate substitutions and format the resulting logi-

cal formulae. These formulae may then be proved by inspection, rigorous argument, or using an

automatic theorem prover; the SAGA project has developed a system which supports the creation and

management of proofs using a number of automated theorem provers[15]. Once the refinement has been

verified, the new specification may be refined further, and the process repeated until an implementation is

produced. Although this example shows only the specification of an entire program, PLEASE may also be

used to specify separately compiled components such as abstract data types.

4. Specifying Abstract Data Types

It has been proposed that the use of abstract data types can enhance program specification and

verification[13,14,20,26,29]. In PLEASE, abstract data types may be specified using an extension of Path

Pascal objects. Figure 6 shows the specification of an object implementing a stack of integers in terms of

the type integer_list or list of integer. An object has a scope like a procedure or function; the variables

declared local to the object form its state[19], in this case a single variable of type integer_list. The invari-

ant defines the set of legal states, in other words the permitted values of the state variables; the invariant

must be true both before and after the execution of any procedure which manipulates the state. The

post-condition for a procedure or function associated with an object should specify the value of the state

at the end of execution, as well as the values of any output parameters.

The stack has four entry procedures which may be called from outside the object; any procedures or

functions not so declared may not be invoked from an external scope. The first item in the object is the

path expression, which can be used to specify synchronization constraints; in this case no constraints are
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type stack = object

path push, pop, top, empty end ;

var s : integer_list ;

invarlant ;

begin true end;

entry procedure push(elmt:xnteger) ;

pre_condition;

begin true end;

post_condition ;

begin s" = < element > II s end;

entry procedure pop;

pre_condition;

begin true end;

post condition ;

begin s'= tl(s) end;

entry function top :integer;

pre_condltXon;

begln not(empty) end;

post_condition ;

begin s' = s and top' = hd(s) end ;

entry function empty :boolean;

pre_condltion;

begin true end;

post condition ;

begin

(empty' = true and s = empty_list) or

(empty ' = false and s <> empty_list)

end;

initially;

pre_condition;

begin true end;

post_condition;

begin s' = empty_list end;

end; (* stack *)

Figure 6. Stack of Integers in Terms of integer_list

specified, so all execution sequences are allowed. The procedure push takes an integer and puts it on the

stack, while the procedure pop removes the top element from the stack. The function top returns the
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integer at the top of the stack while the function empty checks if any items are on the stack. The initially

block is executed when storage for the object is allocated and may be used to set the initial value of the

state.

5. Implementation

A prototype implementation of PLEASE is being constructed on a Vax running BSD 4.2 Unix 4. In

this implementation, PLEASE specifications are transformed into code for the UNSW Prolog Inter-

preter[33]. In a program which combines modules written in conventional languages with PLEASE proto-

types, the Prolog interpreter is run as a co-routine which uses Unix pipes to communicate with the rest of

the program. When a call is made to a routine which is implemented using Prolog, the parameters are

converted to the appropriate format and sent down the pipe to the interpreter. When the execution is

complete, the results are sent back up the pipe, converted to the proper format, and the call returns. A set

of standard representations for PLEASE data types has been devised, and routines to manipulate these

representations have been added to the Prolog run-tlme library.

To prototype a module with a procedure call interface, the PLEASE specification is transformed into

a body and a number of headers. The body contains code in a programming language which may be com-

piled using standard tools to produce an object file. The headers contain interface specifications, which

may be included during the separate compilation of other components which use the body. The object

code for the body can then be linked in with the object files produced to create an executable system.

Using this method we have created systems which integrate modules written in C, Pascal, and Path Pascal

with prototypes created from PLEASE specifications.

6. Future Work

Although PLEASE is currently an extension to Path Pascal, the basic specification, verification and

prototyping methods are independent of the implementation language used. In the long term, we plan to

Unix is a trademark of AT&T Bell Laboratories
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useAdssasourimplementationlanguage.

At present,thetransformationof PLEASEspecificationsintoPrologcodeis largelya manualpro-

cess.Wehavedesigneda systemto performmanyof thesetransformationsautomatically.This system

will searchlibrariesof specificationsandimplementationsfor componentsto bereusedin the prototype

beingconstructed.Wehopethiswill allowtheautomaticprototypingof a largeclassof PLEASEpro-

grams.Weplanto buildaprototypeimplementationto betterjudgethefeasibilityof thisapproach.We

alsoplanto investigatethepossibilityof extendingthesetoolsintoanexpertsystemfor prototyping.For

example,if the systemcouldnot find a componentwith an logicallyequivalentspecification,then

specificationswithweakerpre-conditionsandstrongerpost-conditionscouldbeconsidered.Thesystem

alsomightaidinthereconfigurationof prototypesfor differentoperatingenvironments.

In thecurrentimplementation,prototypesproducedfromPLEASEspecificationsrun quiteslowlyas

thePrologcodeis interpretedandtheinterfacebetweenlanguagesis inefficient.Weexpectthat theper-

formanceof theseprototypescanbedramaticallyincreasedby the useof commerciallyavailableProlog

compilers,suchas[l],whichproducehighqualitymachinecodeandprovideinterfacesto conventional

languages.Weplanto adaptourimplementationfor usewitha Prologcompilerandcontinueourefforts

to increasetheperformanceof theprototypesproducedfromPLEASEspecifications.

We are investigatingthe problemsinvolvedwith the formalverificationof systemsspecifiedin

PLEASE,andplanto investigatetheproblemsencounteredin usingour methodson largeprojects.We

planto gainexperienceby specifying,prototyping,implementing,andverifyinga mediumsizedsystem

usingourmethods.

7. Summaryand Conclusions

PLEASEisanexecutablespecificationlanguagewhichsupportsprogramdevelopmentby incremen-

tal refinement.Softwarecomponentsarefirst specifiedusinga combinationof conventionalprogramming

languagesandmathematics.Theseabstractcomponentsarethenincrementallyrefinedinto programsin

sADAisatrademarkoftheU.S.Government,AdsJointProgramOffice.
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an implementation language. Each refinement is verified before another is applied; therefore, the final

components produced by the development satisfy the original specifications.

Path Pascal is an extension to standard Pascal which supports concurrency and encapsulated data

types. PLEASE is an extension to Path Pascal which allows a procedure or function to be specified using

pre- and post-condltlons written in predicate logic and an abstract data type to have a type invariant.

PLEASE specifications may be used in proofs of correctness, and may also be transformed into executable

prototypes.

We believe that the early production of executable prototypes for experimentation and evaluation

will enhance the development process. Prototypes may increase the communication between customer and

developer, thereby enhancing the validation process. Prototypes produced from PLEASE specifications

may be used in experiments performed to guide the design process. PLEASE specifications may enhance

the verification phase by providing a framework for the rigorous development of programs. Prototypes

produced from different level PLEASE specifications can be run on the same test data and the results com-

pared; this method can give significant assurance that a refinement is correct at a low cost. PLEASE

specifications may also be used in formal proofs of correctness. PLEASE prototypes are based on existing

Prolog technology, and their performance will improve as the speed of Prolog implementations increases.

We believe that the use of PLEASE specifications will enhance the design, development, verification and

reuse of software.

8. References

1. "Quintus Prolog Users Guide and Reference Manual (Version 3)", Quintus Computer Systems, Palo
Alto, California, 1985.

2. Beshers, George M. and Roy H. Campbell. Maintained and Constructor Attributes. Proceedings of

the ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments

(June 1985) pp. 34-42.

3. Blum, B. I. The Life-Cycle - A Debate Over Alternative Models. Software Engineering Notes
(October 1982) vol. 7, pp. 18-20.

4. Campbell, Roy H. "Path Expressions: A Technique for Specifying Process Synchronization", Technical

Report UIUCDCS-R-80-1008, Dept. of Computer Science, University of Illinois at Urbana-
Champaign, 1977.

5. Campbell, R. H. and A. N. Haberinann. The Specification of Process Synchronization by Path

19



Expressions. In: Lecture Notes in Computer Science, Vol. 16, G. Goos J. Hartmanis, ed.

Springer-Verlag, 1974, pp. 89-102.

6. Campbell, Roy H. and Peter A. Kirslis. The SAGA Project: A System for Software Development.

Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (April 1984) pp. 73-80.

7. Campbell, Roy H. and Robert B. Kolstad. Path Expressions in Pascal. Proceedings of tile Fourth
International Conference on Software Engineering (September 1979).

8. Campbell, Roy H. and Paul G. Riehards. SAGA: A system to automate the management of software

production. Proceedings of the National Computer Conference (May 1981) pp. 231-234.

9. Clocksin, W. F. and C. S. Melllsh. Programming in Prolog. Springer-Verlag, New York, 1981.

i0. Fairley, Richard. Software Engineering Concepts. McGraw-Hill, New York, 1985.

11. Gannon, John, Paul McMullin and Richard Hamlet. Data-Abstraction Implementation, Specification,

and Testing. ACM Transactions on Programming Languages and Systems (July 1981) vol. 3,

no. 3, pp. 211-223.

12. Goguen, Joseph and Jose Meseguer. Rapid Prototyping in the OBJ Exeeeeutable Specification Laguagc.

Software Engineering Notes (December 1982) vol. 7, no. 5, pp. 75-84.

13. Guttag, J. V. and J. J. Homing. The Algebraic Specification of Abstract Data Types. Acts Informa-

tlca (1978) vol. 10, pp. 27-52.

14. Guttag, John V., Ellis Horowitz and David R. Musser. Abstract Data Types and Software Validation.

Communications of the ACM (December 1978) vol. 21, no. 12, pp. 1048-1063.

15. Hammerslag, David H., Samuel N. Kamin and Roy H. Campbell. Tree-Oriented Interactive Processing

with an Application to Theorem-Proving. Proceedings of the Second ACM/IEEE Conference
on Software Development Tools_ Technlques_ and Alternatives (December, 1985).

16. Hoare, C. A. R. Proof of Correctness of Data Representations. Acts Informatlca {1972) vol. 1, pp.

271-281.

17. Jackson, M. System Development. Prentice-Hall, Englewood Cliffs, N.J., 1983.

18. Jalote, Pankaj. Specification and Testing of Abstract Data Types. Proceedings of the IEEE Com-

puter Software and Applications Conference (November 1983) pp. 508-511.

19. Jones, Cliff B. Software Development: A Rigorous Approach. Prentice-Hall International, Engel-

wood Cliffs, N.J., 1980.

20. Kamln, Samuel. Final Data Types and Their Specification. ACM Transactions on Programming

Languages and Systems (January 1983) vol. 5, no. 1, pp. 97-121.

21. Kamin. S. N., S. Jefferson and M. Archer. The Role of Executable Specifications: The FASE System.

Proceedings of the IEEE Symposium on Application and Assessment of Automated

Tools for Software Development (November 1983).

22. Kemmerer, Richard A. Testing Formal Specifications to Detect Design Errors. IEEE Transactions

on Software Engineering (January 1985) vol. SE-11, no. 1, pp. 32-43.

23. Kirslis, Peter A., Robert B. Terwilliger and Roy H. Campbell. The SAGA Approach to Large Program

Development in an Integrated l_Iodular Environment. Proceedings of the GTE Workshop on

Software Engineering Environments for Programming-ln-the-Large (June 1985).

24. Kruchten, Philippe, Edmond Schonberg and Jacob Schwartz. Software Prototypinq Using the SETL

Programming Language. IEEE Software (October 1984) vol. 1, no. 4, pp. 66-75.

25. Lehman, M. M., V. Stenning and W. M. Turski. Another Look at Software Design Methodology.

2O



SoftwareEngineeringNotes(April1984) vol. 9, no. 2, pp. 38-53.

26. Liskov, Barbara H. and Stephen N. ZUles. Specification Techniques for Data Abstractions. IEEE

Transactions on Software Engineering {March 1975) vol. SE-1, no. 1, pp. 7-18.

27. Loeckx, Jacques and Kurt Sieber. The Foundations of Program Verification. John Wiley & Sons,
New York, 1984.

28. Meyers, G. J. The Art of Software Testing. John Wiley & Sons, New York, 1979.

29. Musser, David R. Abstract Data Type Specification in the AFFIRM System. IEEE Transactions on

Software Engineering (January 1980) vol. SE-6, no. 1, pp. 24-32.

30. Neighbors, James M. The Draeo Approach to Constructing Software from Reusable Components. IEEE

Transactions on Software Engineering (September 1984) vol. SE-10, no. 5, pp. 564-574.

31. Parnas, D. L. The Use of Precise Specifications in the Development of Software. IFIP Congress

Proceedings (1977) pp. 861-867.

32. Ross, Douglas T. Structured Analysis (SA): A Language for Communicating Ideas. IEEE Transac-
tions on Software Engineering (January 1977) vol. SE-3, no. 1, pp. 16-34.

33. Sammut, C. A. and R. A. Sammut. The Implementation of UNSW-Prolog. The Australian Com-

puter Journal (May 1983) vol. 15, no. 2, pp. 58-64.

34. Shaw, R. C., P. N. Hudson and N. W. Davis. Introduction of A Formal Technique into a Software

Development Environment (Early Observations}. Software Englneerlng Notes (April 1984) vol. 9,
no. 2, pp. 54-79.

35. Terwilliger, Robert B. and Roy H. Campbell. ENCOMPASS: a SAGA Based Environment for the

Composition of Programs and Specifications. Proceedings of the 19th Hawaii Internatlonal

Conference on System Sciences (January 1986).

36. Weinberg, Gerald M. and Daniel P. Freedman. Reviews, Walkthroughs, and Inspections. IEEE Tran-

sactlons on Software Englneerlng (January 1984) vol. SE-10, no. 1, pp. 68-72.

37. Wirth, Niklaus. Program Development by Stepwise Refinement. Communications of the ACM

(April 1971) vol. 14, no. 4, pp. 221-227.

38. Wulf, William A., Ralph L London and Mary Shaw. An Introduction to the Construction and

Verification of Alphard Programs. IEEE Transactions on Software Engineering (December
1976) vol. SE-2, no. 4, pp. 253-265.

39. Yourdon, E. and L. L. Constantine. Structured Design. Prentice-Hall, Englewood Cliffs, N.J., 1979.

40. Zave, Pamela. The Operational Versu_ the Conventional Approach to Software Development. Com-

munlcatlons of the ACM (February 1984) vol. 27, no. 2, pp. 104-118.

41. ----. An Overview of the PAISLey Project - 198._. Software Engineering Notes (July 1984) vol. 9,
no. 4, pp. 12-19.

21



l

I
I
i

I

I
I

I
I

l
I
I
I

I
I

I
I

I
i

SAGA Project Mid-Year Report 1986 Appendix C

The SAGA Approach to Automated Project Management

Roy H. Campbell

Robert B. Terwilliger

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois

Appeared in the

Proceedings of the International Workshop on

Advanced Programming Environments

Trondheim, Norway, June 16-18, 1986



I
I
I

I
I

I
I

I
I

I
i
I

I
I

l
I
I

I
I

The SAGA Approach to

Automate</ Project Management

(Supported by NASA grant NAG 1-138 and an AT_/T Corporation research grant)

Roy H. Campbell

Robert B. Terwilliger

Department of Computer Science

University of Illinois at Urbana-Champaigu

252 Digital Computer Laboratory
1304 West Springfield Avenue

Urbana, IL 61801-2987

(217) 333--4425

Abstract

ENCOMPASS, a prototype software development environment, is being constructed from como

ponents built by the SAGA project. Application of SAGA to the major phases of the lifecycle
will be demonstrated through ENCOMPASS. The system will include configuration manage-

ment; a software design paradigm based on the Vienna Development Method; executable

specifications; languages which can be used to support modular programming, like Berkeley Pas-

cal or ADA; verification and validation tools and methods; and basic management tools. EN-

COMPASS is intended to examine many of the requirements for the design of complex software

development environments such as might be used to construct the space station software. [t is

intended to be used as a prototype for examining many of the more advanced features that will

be required in future generations of software development environments which support

aerospace applications. In this paper, we describe the framework adopted within ENCOMPASS

to provide automated management. We exemplify the approach using an example taken from

problem tracking and change control during software maintenance.

I. Introduction.

Research into the software development process is required to reduce the cost of producing software

and to improve software quality. Modern software systems, such as the embedded software required for

NASA's space station initiative, stretch current software engineering techniques. Embedded software

systems often are large, must be reliable, and must be maintainable over a period of decades. The

software support environment for building such software systems must ensure a high-level of quality

while enabling the embedded software and the hardware on which the software runs to change and the

applications for which the embedded system is designed to evolve. Furthermore, such environments

must be cost effective.

The SAGA project is investigating the design and construction of software engineering environ-

ments for developing and maintaining aerospace systems and applications software (5,7). The research

includes the practical organization of the software lifecycle; configuration management; software require-

ments specification; executable specifications; design methodologies; programming; verification;

validation and testing; version control; maintenance; the reuse of software; software libraries; documen-

tation and automated management (5,11,15,17,18,19,23,24,27,28). An overview of the SAGA project

components is shown in Figure 1. The tools and concepts resulting from SAGA are being used to

develop a prototype software development system called ENCOMPASS (28). The ENCOMPASS

software development paradigm is shown in a diagrammatic form in Figure 2. Although the research

has developed many general tools and concepts that are independent of the application language and

[FIP WG2.¢ International Workshoo on Advanced Programming Environments

Troncll_eim, Norway, 3une 16-18 1986
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Figure 1: The SAGA workbench components

domain, we hope to extend ENCOMPASS to support the development of large, embedded software sys-

tems written mainly in ADA.

In this paper, we study mechanisms to automate the management of ENCOMPASS using a simple

example based on the maintenance activities of problem tracking and change control. We describe the

prototype configuration management system underlying ENCOMPASS and discuss the interelationships

between this system and the automated management mechanisms.

I

i

I
I

2. The Software Development Environment.

To be effective, a software development environment must actively support the software develop-

ment process (5). It must be easier to use the software development tools and the environment than to

use other tools and a general operating system.

The SAGA project is concerned with software development environments, not with the construc-

tion of a general operating system. We assume that SAGA will be used in conjunction with a general

operating system such as Berkeley UNIX 4.2BSD that provides a hierarchically structured file system,
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Figure 2: The ENCOMPASS software development paradigm.

virtualmemory, processingoperations,and mail service.Further, we assume that SAGA willbe treedin

conjunction with an extension of the operating system that supports a networked workstation environ-

ment, perhaps using LINK (25),a kernelbased version of UNLX United (2),that supports transparent

remote network fileaccess,remote spoolingand remote processing.

The SAGA environment consists of a configuration management system and a workbench of

software development tools which are used in a set of development, management and maintenance

activities.

The conj_gurationmanagement system storesand structuresthe software components developed by

a project which may include programs, testdata, documents, manuals, designs, proofs,specifications,

and contracts.

The development, management and maintenance activitiesmanipulate the software components

being built.They include the actions of the software developers,managers, testers,quality assurance

teams, and librarians,such as the editing,compilation, or testingof a program, formatting of a docu-

ment, or delegationof a task.
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The workbench o/8o/tware development tools provides the means by which activities can manipulate

the software components. In ENCOMPASS (28), this workbench is the set of SAGA tools. Development,

management and maintenance activities interact with _hc configuration management system through the

SAGA user interface, which includes the SAGA language-oriented editor Epos (5,18).
..

3. The Software Lifecycle.

The SAGA project has adopted a _management by objectives" (14) approach to the definition of

the software Ufecycle (1,12). Each phase in the lifecycle is oriented towards satisfying an objective by

producing a milestone. For example, the requirements specification phase produces a set of properties

that the software system to be constructed must satisfy. Validation consists of determining that the

specification of the system satisfies the requirements of the system and provides an important milestone

in the development process. Using PLEASE (27), an executable specification language, validation can

take the form of _testing, or executing the system specification. In a large project such as the space sta-

tion software development program, validation may take the form of prototyping using a mixture of

tools including PLEASE, simulation, standardized library routines and walk-througha.

The design phase consists of incrementally refining the requirements specification into algorithms

and component specifications. It has been shown that neither testing nor formal verifications alone can

guarantee correct software (9,10). ENCOMPASS can provide an effective verification process that util-

izes both testing and formal methods. The execution of the PLEASE specification for a component pro-

rides a test oracle for later use in the verification of refinements. Formal specifications and design.

methods also aid software reuse (20,21,22).

In ENCOMPASS, we use the specifications not only for testing, but also as the baals for rigorous

and formal proofs of correctnese. Thus, we intend that the system specification can also be used to

prove theorems concerning the requirements of the system and to prove that a design or refinement step

correctly implements a specification.

PLEASE is baaed on specifying programs using pry- and post-conditions. PLEASE specifications

axe implemented as an extension of a programming language. Both ADA and Path Pascal (6) are being

used as vehicles for ENCOMPASS. The predicates are transformed into logic programs which are exe-

cuted in a Prolog environment (8) that is invoked from the principal programming language. Many of

the transformations may be performed automatically. Research into automating these transformations

continues.

Verification conditions for the refinement of an abstract program into a more concrete one can be

generated during program design. These verification conditions may be inserted into a proof tree and

TED (15), a proof tree editor, may be used to manipulate them. In particular, TED permits proofs to be

decomposed into sequences of lemmas. Various theorem provers may be invoked to mechanically certify

the verification condition.

The development methodology used for refining system specifications into programs is similar to

the Vienna Development Method (16,26). A set of rules specifies the verification conditions that are

required for a given form of refinement. These rules can be applied automatically, but in general proof

of the verification conditions requires some manual labor. Figure 2 summarizes the ENCOMPASS

approach.

The use of formal specifications in ENCOMPASS is encouraged not only to assist code and design

reuse, to promote . Clarity, to aid testing, and to support verification, but also to provide acceptance
criteria which may be used as management objectives for a design step. The objectives can range from a

mechanical proof of the correctness of a design decision to a substantial set of test data for which the

design is valid.
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Many of the objectives of each software development phase can be made into a milestone by requir-

ing the activities of the phase to generate a list of documented products. These products must be vali-

dated before the phase is complete to ensure that the phase has been successful. In SAGA and ENCOM-

PASS, we can use language-oriented tools such as the Epos editor to further enhance the documentation

of milestones. These tools can, we believe, automate repetitive effort in preparing and validating the

achievement of objectives (4).

Management for the software development lifecycle must identify, control, and record the develop-

ment process. A management model can be based on a trace of the activities within the project. Such a

trace can be used to understand the meaning of management in a similar manner to the use of traces in

defining the meaning of a programming language (Campbell and Lauer (3)). In ENCOMPASS, we are

implementing a limited set of managemen_ functions to record, monitor, initiate activities, and inhibit

inappropriate activities. Instead of using a detailed model of management, we have adopted a simpler

approach based on the larger granularity provided by milestones.

4. A Framework for Automated Management.

The use of a management by. objectives approach (14) in the software lifecycle introduces clearly

defined milestones that are agreed upon by the developer and manager. The management objectives for

each activity must define the preconditions under which the activity may occur, acceptance criteria for

the products produced by the activity, and a procedure for evaluating whether the acceptance criteria

have been met. These objectives provide a framework around wi_ch the management of the software

project can be automated.

A simple demonstration of how effective such a management scheme can be is given by the follow-

ing simplified example of managing software maintenance. Figure 3 shows the organizational structure

of a software maintenance group. Analysts and programmers are responsible to a change control board

for their contributions to the maintenance activity. Bugs and requests for modifications to maintained

software are received by the maintenance group. The change control board manages the manpower and

resources of the maintenance group and decides which change requests should be satisfied and which

change requests should be ignored.

Figure 4 shows a simplified diagram of the flow of information that occurs within the maintenance

group. Users submit change requests to the maintenance group. The change control board assigns pro-

gram change requests to an analyst for further examiaation. A program change request may consist of a

bug report or a proposal for enhancements to the software. The analyst reviews the requests and pro- •

ChangeBoardControl I

Figure 3: Organization structure

!
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Figure 4: Data flow for change requests

duces program modification plans for those that are valid. These plans are forwarded to the change con-

trol board for approval and scheduling. The change control board may either allocate a programmer to

work on a job specification based on the plan, or it may reject the plan. A rejected plan will be recon-

sidered by the analyst.

The programmer produces the appropriate software modifications and submits them to the change

control board. The board examines the modifications and may either produce a new software release or

generate a new job specification to reconsider the software modifications. I
A more detailed flow diagram for the change requests would include additional feedback stages to

allow analysts and programmers to negotiate their objectives with the change control board. For exam-
" ° " ° _ n

pie, the programmer may wtsh to question the time allotted to accomphsh the analyst s pla . I

In ENCOMPASS, the management system for change control is implemented using SAGA tools.

Activities within the change control system are coordinated using a combination of notesfiles, mail,

makefiles, and work trays. I

!
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4.1. The Notesfi'le System

The Notesfilcs system is a distributed project information base constructed for SAGA on the UNIX

operating system (11). A file of notes can be maintained across a network of heterogeneous machines.

Each file of notes hu a topic; each note has a title. A sequence of responses is associated with each note.

Notes and responses may be exchanged between separate notesfiles. Notes and responses are documented

with their authors and times of creation. Updates to the notes and responses are transmitted among

networked systems to maintain consistency. Notesfiles use the standard electronic mail facility to facili-

tate the updates. A library and standard interface permits any user program to submit a note or

response to a notesfile. This library has been used in the construction of automatic logging and error

reporting facilities in software and test harnesses. Within the SAGA project, we have used the Notesfile

system to organize technical discussions, product reviews, problem tracking, agendas and minutes,

grievances, design and specification documentation, lists of work to be done, appointments, news and

mail.

4.2. Work Trays

A work tray is a new mechanism which has been introduced in order to manage and record the allo-

cation, progress, and completion of work within a software development project. Each user may have a

number of work trays, each of which may contain a number of tasks that contain software products.

Products are stored as entities within the ENCOMPASS configuration management system. There are

three types of trays: input trays, in-progress trays, and file treys. Each user receives tasks in one or

more input trays. The user may then transfer these tasks to an in-progress tray where he will perform

the actions required of him and produce new products. The user may then return the task via a concep-

tual output tray to an input tray for the originator of the task. A user may also create new tasks in in-

progress trays that he owns. These tasks may then be transferred to another user's input tray. A task

that has been transferred back into the in-progress tray of the user who created the task may be marked

as complete and transferred to a file tray for long term storage.

Each task has a home, which is the tray where the task was created, a location, which is the tray

where the task currently r_sides, and an attribute time, which is the time the last action involving that

task took place. Status commands allow examination of the tasks in a tray and the products in a task.

4.3. Implementation of the Change Control Scheme

User change requests can be generated because of bug reports or user requests for enhanced func-

tionality. These are sent to the change control system by electronic mail and are stored in a notes file

"User Change Requests".

A user change request is a form that can be filled in manually using an editor tailored for form

filing or can be generated by software error reporting tools. It is entered into the notesfile mail system

by standard mailing utilities. In this way, user change requests can be generated from a wide range of

sources, some local and some remote.

The User Change Requests notesfile is the receiving station for all requests to change the software.

The Change Control Board manager creates a particular "Program Modification" task in an in-progress

tray. In addition to the details extracted from the notesfile, the manager may also add the amount of

time within and the urgency with which a response to the request should be created. The manager

transfers the task to the "Program Modification Request" input tray of an analyst, see Figure 4. The

analyst will transfer the request to a in-progress tray in order to respond to the request. The analyst

may create a product called an "invalid Request" report as a result of his analysis if he believes that

such a report is appropriate. Alternatively, the analyst may create a detailed description of the steps

I
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needed to implement the change or bug fix. The analyst transfers the task with the analysis of the

request back to the manager's "Program Modification Plan" input tray. Should the,analyst not respond

to the request within a reasonable time, the periodic ]nyocation of consistencychecking programs can

automatically detect the delay and enter a complaint in the "Problem Tracking Management" notesfile

(which isnot shown} and flagthe Program Modificationtask with an item that documents the warning.

The manager may transferthe task back into his in-progress tray. Depending upon the products

produced by the analyst,he may registerthe task as completed, transferit to a filetray and write a

response to the request in the notesfilethat further action is unnecessary, convene the change control

board, or rejectthe plan and reassignthe task to the analystwith recommendations for a revisedplan or

to rejectthe request.

Should the manager wish to review the plan, the Change Control Board willbe convened to discuss

the Program ModificationPlans. Alternatively,the Board may discussthe Plans electronicallythrough

the notesfilesystem. Given acceptance of a plan, the manager of the problem tracking system checks

out the products that axe needed to make the modificationfrom the projectlibraryand enters them into

the task. He then transfersthe task to the "Job Specification"input tray of a programmer.

The programmer receivesthe task and transfersitinto an in-progresstray. The programmer will

add and modify code, documentation, test cases,and proofs of correctnessto the products of the task.

When complete, the programmer will transferthe task to the "Software Modification Summary" input

tray of the manager.

When a Software Modification Summary isreceived,the manager willagain convene the Change

Control Board. Ifthe review issatisfactory,he willcheck the new product into the projectlibraryas a

new version of the software and announce the releaseof the software through the "Software Release"

notesfile.Ifthe reviewisunsatisfactory,he may createa new Job Specification.

At any time, the manager or programmers may query any of the tasks they have been assigned or

have created. Acceptance criteriamay be in the form of executable procedures which produce reports

(forexample, executableacceptance tests),recordsof compilations or examinations of the fileactivityof

program files.These acceptance criteriamay be automatically stored as products of the task. Status

commands willsummarize such records,report on who iscurrentlyworking on the task,who iswaiting

for completion of the task,and what other tuks axe needed to be completed before the current task can

be completed.

Thus, very simple mechanisms can be used to automate management, provided that the objectives

being managed are well-defined. In the example given, the problem and the resulting corrective maint.e-

nance need to be well-defined.In addition,the correctivemaintenance must be validated. A feasibility

study of the work tray concept has been completed and the concept isbeing extended. In the following

section,we discussthe interactionbetween maintenance and the configurationmanagement system.

5. Configuration Management System

The configurationmanagement system isresponsiblefor maintaining the consistencyof, integrity

of and relationshipsbetween the products of software development. In the SAGA project,Terwilliger

and Campbell (28) model software configurationsusing a graph in which the nodes represent unique|y

named entitiesor uniquely named collectionsof entitiesand the arcs represent relationshipsbetween

entities.Layers within the graph represent differentabstract propertiesof the software products. The

graph alsorepresentsthe organizationof the software products intoseparate concerns.

In ENCOMPASS, software configurationscan be decomposed by organisationalrelationshipsinto

verticaland horizontalstructures. The verticalstructuresform a hierarchy and decompose the system

into independent components. For example, within a software development project,the configuration
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may be structured into subsystems. These, in turn, are decomposed into modules which are decomposed

into compilation units.

The horizontal structures represent dependencies between entities at the same hierarchical level.

Thus, each project, subsystem, module, and unit may have a horizontal structure which includes depen-

dencies between documents, version information, requirements and system specification, shared

definitions, architectural design, detailed design, code, binaries, linked binaries, test cases, procedures for

generating executable binaries, listings, reports, authors, managers, time and tool certification stamps,

development histories, and concurrency control locks. Relationships may specify design, compilation and

version dependencies. Depending upon the granularity of the entities, the graph can be represented by

the UNIX directory structure, by symbolic links, or by databases. For example, in ENCOMPASS the

vertical structure is stored using the UNIX directory structure. Shared definitions are represented by

symbolic links. A database at each level in the vertical structure is being built to provide data diction-

ary capabilities and author manager relations.

Abstractions of the collection of software products are provided by views. A view represents a par-

ticular abstract property or concern and is implemented as a mapping from names into products. The
"base view" is a complete collection of the software products. For example, a "functional test" view

might represent the system as a collection of functional specifications, object code, test programs and

test data. Other examples of views include a single version abstraction of a system that has many con-

current versions, documentation, and the work of a particular developer.

Continuing our discussion of change control within m,_intenance, we consider the pr,.,blems arising

in modifying an existing program. Figure 5 shows an example tree traversal program stored in an

ENCOMPASS configuration management system (KirslLs et ad (19)). Not all the dependencies and details

are shown. The program is presented as a subsystem containing four modules, preorder, stack, tree, and

item. Each module contains entities including a makefile (Feldman (13)), specification, body or source

code, compiled object code, and executable program. Only one type of relationship is shown, the ,lses

Source

Dependencies

Object

Dependencies

Preorder Stack Tree Item

Module Module Module Module

Entities: (_specification @body (_)makefile Q compiled object (_ executableprogram
Relation: --->uses

Figure 5: Base view for the preorder program
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relationship, which _ssociates an entity with another entity if tl_e former entity references the latter one.

Each "uses" relationship should be accompanied by a "used by" relationship, not shown in the figure,

which is simply the inverse of of the "uses" relationship, and which permits the references to a

module/entity to be determined from that module/entity. Each body within a module references its

own specification. The body of preordcr references the specifications in the other modules. The makefile

for each module references the specification and body to be compiled, and the compiled object which will

be produced. In addition, the makefile in the preorder module also references the makefiles and objects

in the other modules, since it needs these in order to produce an executai_le program.

A number of benefits are realized if this dependency graph is stored in machine accessible f'orm and

if the software tools in use are adapted to refer to the graph. A data retrieval tool can provide informa-

tion about the hierarchical structure of the program. For a given module, the tool can show its depen-

dencies with respect to other modules.

An editor, adapted to use this graph, can permit a programmer to specify a routine, module, or

progra m to edit. If the programmer specifies a module, that module becomes the locus at the beginning

of the editing session. The programmer edits within the context of that layer of abstraction. Only the

local context of the module is important. The programmer can find and display other modul-s, routines,
f

or programs which use this module. These references may be checked easily to determine how a change

in the current module will affect them. Similarly, other modules that are referenced by the modules

which reference the module under consideration may be located easily and displayed.

Compilation tools, which access the dependency graph, can support automatic, incremental recom-

pilation on a module by module basis. For example since the body of preotder depends oti the

specification for 8tack, if the specification for st,,ck has been changed since the time preorder was last

compiled, then preordee, will be recompiled. A compilation tool can use the dependency graph to resolve

the dependencies at compile time and access all files needed to perform a compilation.

Versions of the preorder program are stored in a program library (28).

sions appear in the library as independent entities as depicted in Figure 6. The versions are, however,

interdependent because of the history of their construction. The versions are constructed from revision
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Figure 6: Global library containing versions of preorder bsme view
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control historiesof preorder. Each preorder version is a collectionof versions of the other modules.

Each version of a module isstored using a historymechanism based on the Revision Control System

(RCS)" of Tichy (29).Similarly,the information describing a version of preorder is also stored under

RCS. Library makefilesconstruct a specificversionof preorder within the Library on a demand or check

out basis. The specificversion of preorder specifiesthe versions of each module that are needed to be

extracted. The dependencies between modules and within modules are recorded in a format that can be

stored within RCS. (Inour prototype ENCONfFA_S environment, these dependencies are recorded using

the UNIX tape archivingfacilitytarand placeddirectlyunder RCS.)

To modify preorder,a read-only copy of the latestversionof preorder ischecked out. This version

isstillunder configurationmanagement and resideswithin the protectionprovided by the global library.

Figure 7 shows how a view of preorder k constructed in a workspace. The workspace facilitateschang-

Global Library

,
I I I I

I I I I I I !

I I I 1I I I I I I I I I
I I I I I I |
I I I I I I I
I I I I I I I

I _..,.,,.,+ _ _ I _..,.L I I

l ,_..._..._ , I t , l ,_"---......_ ,

Workspace
Legend:

0 entity

':-';image

-_- projects onto

Figure 7: Workspace containing view of preorder
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ing preorder. Each entity within preorder can be accessed read-only through this view. In the ENCOM-

PASS prototype, the view is implemented as a hierarchical directory structure which initially only con-

tains symbolic links to the base view stored in the library.

In order to modify components of preorder, the entities concerned axe checked into the workspace.

In terms of implementation, the symbolic links are replaced by copies of the actual entities to which they

correspond. Fizure 8 shows a new version of preorder being developed in which two entities within

module item are being modified. If the new version being developed is a sequential revision of preorder,

locks are placed within the library on those modules checked into the workspace. These locks prevent

any parallel development of the same entities. The next version number of preorder and the modules

concerned are assigned. If the new version is instead a parMlel revision of preorder, locks are not

imposed but parallel revision version numbers for preorder and the modules concerned are assigned.
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Global Library

)

Figure 9: New version of preorder "installed in global library

Once the development and testing of a new version is complete, the programmer submits a sum-

mary of the modifications to the change control board. The change control board evaluates the

modifications and makes a recommendation as to whether the work constitutes a valid version. (In a

more complex change control system, the evaluation of the new software might be performed by a qual-

ity assurance group. Our management model and implementation are easy to extend to permit such a

system.) Following a software release, the new version is integrated into the library system, as shown in

Figure 9, and the RCS files of the individual modules that are altered are updated.

8. Summary

This paper describes a prototype management system that has been constructed on UNIX as part

of the ENCOMPASS environment. The example change control system described has been built using

the system. The prototype system demonstrates the feasibility of the approach, but further research and

refinement are required to develop a practical management system.

The prototype implementation is not robust and olrers no protection from misuse. A complete log

of the actions performed on the tasks should be kept in a secure location to support auditing. Further.

the implementation has limited goals and is not fully integrated into the SAGA set of tools and the

configuration system. The system permits a task to be decomposed into subtasks but should maintain

records of those relationships. Finally, the system ought to be coupled to management tools such a_

report generators, Pert chart analyzers and flow charting displays.

However, the approach is simple and provides a framework for building automated management.

We believe our approach can be refined into a production quality system for managing software projects.

We shall be exploring refinements of our approach to accomplish this end.
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Abstract. Large scale software development is so expensive that new tech-

niques and methods are required to improve productivity. The software

development environment is a proposed solution in which software

development methods and paradigms are embedded within a computer

software system. The goal of an environment is to provide software

developers with a computer-aided specification, design, coding, testing

and maintenance system that operates at the level of abstraction of the

software development process and the application domains of its intended

products.

Proposed software development environments range from simple collec-

tions of software tools that enhance the development process to complex

systems that support sophisticated software production methods. Every

environment must include a representation for the eventual software pro-

ducts and a, perhaps informal, notion of the software development pro-

cess. In the SAGA project, we have been investigating the principles and

practices underlying the construction of a software development environ-

ment. In this paper, we review our studies and resultsand discuss the is-

sues of providing practicalenvironments in the short and long term.

1. Introduction

Research into software development is required to reduce the cost of produc-

ing software and to improve software quality. Modern software systems, such as

the embedded software required for NASA's space station initiative, stretch

current software engineering techniques. The requirements to build large, reli-

able, and maintainable software systems increases with time. Much theoretical

and practical research is in progress to improve software engineering techniques.

One such technique is to build a software system or environment which directly

supports the software engineering process. In this paper, we will describe research

in the SAGA project to design and build a software development environment

which automates the software engineering process.

The design of a computer-aided so['tware development environment should

be guided by the problems that arise in manual software development methods.

Many of these problems are reflected in software cost estimation models and
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measurements (Boehm (4)). A major proportion of the cost of a software system

is in its maintenance (60%), and testing (20%). Fairley (13) comments that

software costs are very sensitive to mistakes in the early requirements and design

phases of development. Sackman et al (37) and Myers (32) have demonstrated

that programmers and program testers vary greatly in the productivity and qual-

ity of their work. However, high-level languages and software tools to support

development may increase the productivity of a programmer by as much as 222_o

(4). Orders of magnitude improvement in the productivity of software engineers

might be achieved in many application areas if the products of software engineer-

ing can become reusable, that is, if the requirements, design, documentation, vali-

dation, and verification of a software system can be reused in maintenance and in

building new systems.

The SAGA project is investigating the design and construction of practical

software engineering environments for developing and maintaining aerospace sys-

tems and applications software (Campbell and Kirslis (8)). The research includes

the practical organization of the software lifecycle, configuration management,

software requirements specification, executable specifications, design methodolo-

gies, programming, verification, validation and testing, version control, mainte-

nance, the reuse of software, software libraries, documentation and automated

management. The research is documented in the mid-year report (Campbell et al

(10)). An overview of the SAGA project components is shown in Fig. 1.

In this paper, we will argue for research into formal models of the software

development process. Such formal models should aid experimental evaluation of

the practical techniques that are used in the construction of software development

environments. The SAGA project is developing models of configuration, design,

incremental development, and management. The concepts and tools resulting

from SAGA are being used to develop a prototype software development system

called ENCOMPASS (Terwilliger and Campbell, (41)). Although the research has

developed many general tools and concepts that are independent of the applica-

tion language and domain, we hope to extend ENCOMPASS to support the

development of large, embedded software systems written mainly in ADA.

2. The Requirements of a Software Engineering Environment

Practical software development environments will be used by software

developers and software managers with several years experience in software

development. Although some components of the system may be used as educa-

tional tools, this is not a major goal. The requirements for a practical software

development environment can be structured into three components:

1. the organization and representation of software products produced by the

development process (the configuration management system,)

2. the software development processes (the lifecycle model, software develop-

ment, management, and methodologies,)

3. the tools by which software development processes interface to, name, and

manipulate software products.
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Fig. 1 Tlie SAGA Workbench Components

Guiding the selection of requirements for each of these components, we pro-

the following principles:

A formal basis should be provided for the software environment and its com-

ponents. This basis should serve to validate the software development para-

digms and methodologies used in the environment and also verify the correct

operation of the components. The formal basis should allow the specification

of such concepts as the model of the software lifecycle in use, the design

methodologies, maintenance methods as well as the dependency relationships

between products of software development (including requirements

specifications, design, tests, documentation, problem tracking, as well as code

and versions.)

Management by objectives. Each software engineering task should have

well-defined goals, participants, and managers. The developers should be

able to interact with their managers in refining these goals (Gunther (17)).

The task should produce clearly identified software products which may be

validated or verified with respect to the goals of the task (Lehman et al (30))

and a method of certifying that the validation or verification has occurred.

!
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3. Automated management aids should provide a project manager with tools

which summarize project activity and progress. A project manager should

be allowed to review the progress of the project in detail or in summary at

any time.

4. Automated development tools should actively support software development

and enhance the software developer's abilities. Campbell and Kirslis (8)

argue that a software developer must be convinced that a task can be better

performed using a tool than without it, irrespective of what other services

the tool might provide.

5. Automated quality control tools should permit inspections and audits of the

derivation of any software product. This should include examination of any

certification process, audits of the software development process, and ana-

lyses of the project management. Tools should also support the verification

that a software product or development process meets appropriate accep-

tance criteria and that the configuration management system is kept con-

sistent and up to date.

Many of the principles require further research. In the following sections, we

discuss the state of our current research in applying these principles to the corl-

struction of software systems.

8. Configuration Management System

The configuration management system is responsible for maintaining the

consistency of, integrity of and relationships between the products of software

development. In the SAGA project, Terwilliger and Campbell (41) model the

configuration management system using a graph in which the nodes represent

uniquely named entities or uniquely named collections of entities and the arcs

represent relationships between entities. Layers within the graph represent

different abstract properties of the software products. The graph also represents

the organization of the software products into separate concerns.

The configuration system for ENCOMPASS can be decomposed by organiza-

tional relationships into vertical and horizontal structures. The vertical struc-

tures form a hierarchy. For example, within a software development project, the

configuration may be structured into subsystems. These, in turn, are decomposed

into modules which are decomposed into compilation units.

The horizontal structures represent attributes of the hierarchy. Thus, each

project, subsystem, module, and unit may have an attribute for documentation,

version information, requirements specification, shared definitions, architectural

design, detailed design, code, binaries, linked binaries, test cases, procedures for

generating executable binaries, listings, reports, authors, managers, time and tool

certification stamps, development histories, and concurrency control locks.

Interattribute relationships specify design, compilation and version dependencies.

Depending upon the granularity of the entities, the graph can be represented by

the UNIX directory structure, by symbolic links, or by databases. For example,

in ENCOMPASS the vertical structure is stored using the UNIX directory struc-

ture. Shared definitions are represented by symbolic links. A database at each
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I level in the vertical structure is being built to provide data dictionary capabilities

and author manager relations.

I Abstractions of the collection of software views.products are provided by

The "base view" is a complete collection of the software products and other

views. A "view" is a layer in the graph which represents a particular abstract

I property or concern. For example, a "functional test" view might represent the

system as a collection of functional specifications, object code, test programs and

i test data. Other examples of views include a single version abstraction of a sys-tem that has many concurrent versions, documentation, and the work of a partic-

ular developer.

I Fig. 3 shows an example tree traversal program stored in an ENCOMPASS
configuration management system (Kirslis et al (26)). It shows a base view, which

includes all the details of the software, and a test view, which is a projection onto

I the base view that abstracts some of the details of the base view and thesupports

testing of the software. Not all the dependencies and details are shown. The pro-

gram is presented as a subsystem containing four modules, preorder, stack, tree,

I contains entities including a makefile (Feldman (14)),and item. Each module

specification, body or source code, compiled object code, executable program, test

i specifications, test body, test makefile, compiled test object, executable test: Preorder
Preorder _ Preorder Module

Module i Test Module _

!

• Tree ( _ ) --- -...".... r_

I
Test View Item projections Base View

I Module

I Entities-(__)specification (_body (_)rnakefile (_ compiled object (_executableprosrarn

(_) testspecification {_) test body _!)testmakefile ®compiled test object

(_executable test program (_test data

I Relatlonw: _ uses --_- projects onto

I Fig. 3 A view of the preorder program

I



program, and test data. Only one type of relationship is shown, the uses relation-

ship, which associates an entity with another entity if the former entity references

the latter one. Each "uses" relationship should be accompanied by a "used by"

relationship, not shown in the figure, which is simply the inverse of of the "uses"

relationship, and which permits the references to a module/entity to be deter-

mined from that module/entity. Each body within a module references its own

specification. The body of prearder references the specifications in the other

modules. The makefile for each module references the specification and body to

be compiled, and the compiled object which will be produced. In addition, the

makefile in the preorder module also references the makefiles and objects in the

other modules, since it needs these in order to produce an executable program.

A number of benefits are realized if this dependency graph is stored in

machine accessible form and if the software tools in use are adapted to refer to

the graph. A data retrieval tool can provide information about the hierarchical

structure of the program. For a given module, the tool can show its dependencies

with respect to other modules.

An editor, adapted to use this graph, can permit a programmer to specify a

routine, module, or program to edit. If the programmer specifies a module, that

module becomes the locus at the beginning of the editing session. The program-

mer edits within the context of that layer of abstraction. Only the implementa-

tion details of the module are important. The programmer can find and display

other modules, routines, or programs which use this module. These references

may be checked easily to determine how a change in the current module will

affect them. Similarly, other modules which this module references may be

located easily and displayed.

Compilation tools, which access the dependency graph, can support

automatic, incremental recompilation on a module by module basis. For example

since the body of preorder depends on the specification for stack, if the

specification for stack has been changed since the time preorder was last compiled,

then preorder will be recompiled. A compilation tool can use the dependency

graph to resolve the dependencies at compile time and access all files needed to

perform a compilation 1.

Test tools can use the dependency graph to provide incremental, hierarchical

testing for modular programs. A test suite and driver may be associated with

each module. A program can then be incrementally tested in a bottom up

manner, that is, all modules referenced by module A will be tested before module

A is tested. If any of the referenced modules fail their tests then the system can

print an appropriate message and terminate the testing session. If the test driver,

test suite, or module has not been changed since the tests were last run, the sys-

tem can report the previous results without rerunning the tests.

lIn practice, by using UNIX we can do better than this. By an appropriate implementation

of the source dependency information, we can make it appear as though all files needed for a com-

pilation are resident in one place, permitting us to use an existing makefile interpreter program
and compiler without modification {26).
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Fig. 3 includes a test view which might be used by a quality assurance team

to test preorder after it has been completed. The test view contains a module

corresponding to each code module in the base view. The dashed arrows

represent the projection relationship which shows the correspondence between

entities in the test and base view. Each projection relationship is accompanied by

an abstraction relationship, not shown in the figure, which is its inverse. Each

module in the test view contains the specification of the code module to be tested

as well as the makefile, load module, and test data from the corresponding test

module in the base view.

4. Software Development Processes

Fairley (13) describes a life-cycle model as the sequence of distinct stages

through which a software product passes during its lifetime. There is no single,

universally accepted model of the software life-cycle according to Blum (3) and

Zave (44). In SAGA, we have investigated several aspects of the software life-

cycle.

4.1. Software Design Model

In many models of the life-cycle, a requirements specification of the system

to be built is created early in the lifecycle. As the project proceeds, components

of the software system are built and verified for correctness with respect to this

specification. The specification is validated when it is shown to satisfy the custo-

mers requirements. To helpmanage the complexity of software design and

development, methodologies which combine standard representations, intellectual

disciplines, and well-defined techniques have been proposed (Jackson (20), Wirth

(42), and Yourdon (43)). In the SAGA project, we are developing a formal model

for the development process and using it to study a methodology similar to the

Vienna Development method described by Jones (21).

A document describing the function of a software system is called a func-

tional specification (13). Design introduces the algorithms and data structures to

implement a functional specification. In this paper, we will argue that there are

three separate fundamental issues involved in developing computer-based

software design aids. We will assume that the development process consists of a

number of refinement steps. The first concern is the design decision to select one

refinement step instead of another. Design decisions are difficult to formalize

without a better understanding of the development process and the application
domain.

The second concern is the documentation and verification of a refinement

step or implementation decision. Several researchers have argued the need for

rigorous argument or formal verification of a refinement step using proof methods

(21). The refinement step can be regarded as a correctness preserving transforma-

tion from an abstract program to a more concrete program. Using such an

approach, the verification becomes a record of the refinement steps.

The third concern is the development process. We argue that a model for

the development process is required in order to reason about different develop-

ment methodologies and the different methods of verifying refinement steps.



In our model of a development process,a functional specification defines a
potentially infinite number of implementations. The development processselects
a single implementation from this large set. Each refinement step produces a
derived functional specification or "abstract program" which constrains the
number of possible implementations. The purpose of the model is to allow a
study of incremental program development. Within the framework provided by
the model we can compare different development methodologies and investigate
subtle problems in a rigorous manner. By separating the development process
from the issuesinvolved in performing a refinement step, our approach provides a
framework to build tools that support a general notion of a development process

and that are independent from particular design methodologies. We hope that

the model can also help justify design rules which permit rigorous, but not for-

mal, arguments of correctness by construction.

4.2. Executable Specifications

A major problem arising in the design of software is the accurate determina-

tion of the function that the software is to perform. The users of the system

being constructed may not really know what they want and they may be unable

to communicate their desires to the development team. If a functional

specification is in a formal notation, it may be an ineffective medium for com-

munication with the customers, but natural language specifications are notori-

ously ambiguous and incomplete.

Functional specifications may be introduced as part of the design process

(perhaps describing the elements of an abstract program) and should help docu-

ment the design process as well as enhance the designer's understanding of the

design. If a formal notation is used for such specifications, a designer may not be

sufficiently well-motivated to document his design with a specification because it

does not directly contribute towards the act of creating a program. However, a

natural language specification may be too imprecise.

Protatyping (Kruchten et al (28)) and the use of executable specification

languages (Goguen and Meseguer (16), Kamin et al (22), Zave (44), (Kern-

meter(23)) have been suggested as partial solutions to these problems. Providing

the customers with prototypes for experimentation and evaluation may increase

communication between customers and developers and enhance the validation

process. Executable specifications used in the design process provide stubs that

allow experimental evaluation of the algorithms and data structures of a program

being developed without requiring the program's completion.

Terwilliger and Campbell (41) describe the design of an executable

specification language called PLEASE for use in the SAGA Project. By providing

executable programs early in the development process, errors in the specification

may be discovered before the internal structure of the system has been defined.

We believe that this approach will enhance the software development process. A

methodology for using executable specification languages in the software lifecycle

is being examined as part of ENCOMPASS (41).
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4.3. An Executable Specification Design Method

ENCOMPASS supports program development by successive refinement using

a similar approach to that of the Vienna Development Method (Jones (21), Shaw

et al (39)). In this method, programs are first specified in a language combining

elements from conventional programming languages and mathematics. These

abstract programs are then incrementally refined into programs in an implementa-

tion language. The refinements are performed one at a time and each is verified

before another is applied. Therefore, the final program produced by the develop-

ment correctly implements the original abstract program. The ENCOMPASS

software development paradigm is shown in Fig. 4.1.

Terwilliger and Campbell (40) describe how abstract programs may be writ-

ten in PLEASE and refined into the implementation language Path Pascal

(Campbell and Kolstad (9)). In PLEASE, a procedure or function may be

specified with pre- and post-conditions written in predicate logic. Similarly, an

abstract data type may be specified using an invarlant. PLEASE specifications

I RequirementsDefinition

Validation

I Refinement

%%

System I _,
I

Integration I _ _

I: ................................................................

,.
Verification _ Transformation

\

Fig. 4.1 The ENCOMPASS Software Development Paradigm

I



may be used to argue correctness. They also may be transformed into prototypes

which use Pr01og (Clocksin and Mellish (11)) to "execute" pre- and post-

conditions. These prototypes may interact with other modules written in conven-

tional languages.

Lehman et al (30) propose that software development may be viewed as a

sequence of transformations between specifications written at different linguistic

levels. Neighbors (33) describes the construction of a system that supports a simi-

lar development methodology. ENCOMPASS supports this view of software

development by allowing abstract, predicate logic based definitions of data types

or routines to be transformed into successively more concrete realizations. The

use of executable specifications allows prototypes for two or more linguistic levels

to be executed using the same input data and the results compared for the pur-

poses of verification or debugging. An executable specification provides a frame-

work for the rigorous development of programs in a manner similar to (21).

Although detailed formal proofs are not required at every step, the framework is

present so that they may be constructed if necessary. (However, it is our experi-

ence that many problems arise in changing a rigorous argument into a mathemat-

ical proof.)

Fig. 4.2 shows an example Of a PLEASE specification for a SORT program.

The specification is given in terms of a pre-condition and post-condition for sort.

Two predicates, "permutation" and "sorted", are used by the post-conditions.

Terwilliger and Campbell (40) describe the translation of the specification into

Prolog. In general, the translation of arbitrary specifications into executable pro-

grams is difficult. Theoretically, the guaranteed automatic production of a ter-

minating program from an arbitrary specification written in first order logic is not

possible. One aspect of our future research will be to study what. is possible in

practice.

The specification may be used to validate the user requirements for sort or

they may be used as a test oracle for the subsequent refinements of sort (40). In

addition, using rules similar to those provided in the Vienna Definition Method

(21), an argument for correctness can be constructed for the sort program based

on the refinement steps used to build the program. Examples of some of the rules

are given in (40).

4.4. Software Management Model

A management model for software development must identify, control, and

record the development process. A management model can be based on a _race of

the activities within the project. Such a trace can be used to understand the

meaning of management in a similar manner to the use of traces in defining the

meaning of a programming language (Campbell and Lauer (6)). The trace

represents a complete history of all significant events that have occurred in the

project. Projections from the trace permit identification of particular sequences

of activities. Control can be expressed in terms of the valid continuations of a

partially completed trace.
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program sort (input., output);

#include "integerjist.spec"

vat input_list,outputJist: integer_list;

predleate permutation (list1, list2: integerJist);
vat front, back: integer_list;
begin

(list1= emptyJist) and (list2--_emptYJist)

or

(list1-----front !I<hd (list2)> II back) and
permutation (frontIIback, tl(list2))

end;

predicate sorted (I: integerJist);

vat x: integer;
begin

(I-----emptyJist)
or

forail (x I member (x, ti(l)), x >---- hd(l)) and
sorted(tl(l))

end;

pro_condition;

begin

text_tointegerlist(input)< > integerJist_error

end;

post_condltion;

begin

(input_list = text_to..integerlist(input)) and

permutation(input_list,outputJist)and
sorted (output..list)and

(outputlist ----text_to_integerJist(output'))
end;

begin

end;

Fig. _.2 A specification of a sort program

In ENCOMPASS, we are implementing a limited set of management func-

tions to record, monitor, initiateactivities,and inhibit inappropriate activities.

Instead of using a detailed trace model of management, we have adopted a practi-

cal approach based on the larger graaularlty provided by milestones. We struc-

ture the management model of a software project into units of work which create

well-defned products (Gunther (17)). The management objectives for each

activity must define the pro-conditions under which the activity may occur,

acceptance criteriafor the products produced by the activity,and a procedure for

evaluating whether the acceptance criteriahave been met. The acceptance cri-

teria evaluation procedure may be invoked at any time during the activity and

produces status reports of the software product. Satisfactionof the pro-condition

and the acceptance criteria provide "milestone" events. A record of the

occurrence of these milestones is stored in a management log. Accounting



information may be associated with each unit of work. The log and accounting

information can be used to generate reports and, when used with other informa-

tion such as PERT schedules, to control the project.

Work units form a hierarchical structure. The reports generated by one

work unit may satisfy a pre-condition or acceptance criteria for another activity.

In ENCOMPASS, management monitoring, assessment, and control is imple-

mented using make files, predicate evaluation, and Notesfiles. Periodic execution

of makefiles are used to implement automated management and assessment of the

project. The makefiles incorporate automatic evaluation of work unit pre-

conditions, the creation of work units, the invocation of acceptance criteria

evaluation procedures, and the creation of milestones when a pre-condition or

acceptance criteria is met. The Notesfiles (Essick (12)) record milestones and

reports and propagate traceable management information to developers and

managers.

For example, consider the implementation of a problem tracking system.

Bug reports are mailed to the "problem definition" notesfile. They can be created

by a user, a developer, or by the execution of a program at a remote or local site.

Debugging facilities within a software product can automatically report an inter-

nal error by invoking the Notesfiles mailer. Similarly, development tools may

report errors, for example the test harness may automatically report the detection

of an error.

The problem definition notesfile records the site, author, time, address, and

complaint. The "problem tracking manager" may set a timeout on the notesfile

sequencer which specifies the acceptable interval within which a "problem

definition analyst" should respond to the note. After expiration of the timeout,

the notesfile automatically notifies the manager using a "management" notesfile.

The problem definition analyst may respond to the note in several ways. A

response may be created that identifies the problem as a user error. Alterna-

tively, the analyst may create a request in a maintenance programmer's

"activity" Notesfile to consider possible solutions to the problem.

The acceptance criteria for the programmers task is to assess the practical

design issues involved in correcting the problem, provide a cost estimate of the

work involved, and produce an implementation plan. While the programmer is

considering possible solutions, the problem definition analyst or problem tracking

manager may request progress reports. These reports may consist of any mile-

stones accomplished and preliminary documentation generated.

When the problem definition analyst is satisfied that the acceptance criteria

for the task have been satisfied, he may then submit a change request note to the

project change request board (Fairley (13)). This milestone and the timetable of

the change request board determine the conditions under which a meeting of the
board is scheduled.

4.5. Project Libraries.

Horowitz and Munson (19) suggest that the reuse of software can

significantly reduce the cost of program development, and systems which contain
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libraries of previously coded modules and/or a number of standard designs for

programs have been proposed by Lanergan and Grasso (29) and Matsumoto (31).

In ENCOMPASS, any software component or group of components can be saved

for later reuse. In addition to source and object code, documentation, formal

specifications, proofs of correctness, test data and test results can all be stored in

the central library and later retrieved. The library can support a number of pro-

jects, both accepting and supplying components for reuse in all phases of develop-

meat. The structure and organization of the library is shown in Fig. 4.3.

A programmer, developing code, will use a view of the project library to

access shared code and data, test cases, specifications, design, and other products

of the proiect. The workspace extends the view with local copies of code that are

being modified and with new code. Eventually, the programmer will submit his

workspace to be placed under the configuration management of the library. The

configuration management of the workspace must be consistent with that of the

library and acceptance criteria may be applied to the software products before

the library is updated. An integration test may be required as a pre-condition to

a library update performed on a working version of the software system. A
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system acceptance test may be required as a pre-condition to a library update

performed on a stable version of the software system. The project leader has

responsibility for correct library operation including the view and workspace crea-

tion and workspace integration.

5. Software Tools

A large number of software tools are required to implement computer-aided

software development environment. Rather than build a large number of special-

ized tools, in SAGA we have chosen to build a small number of tools that can be

specialized for specific purposes. Examples of such "generic" facilities are the

Notesfiles system (Essick (12), the SAGA language-oriented editor (Campbell and

Kirslis (8), the symbol table manager (Richards (35)), tree editor (Hammerslag et

al (18)) and the attribute evaluation schemes used for semantic evaluation (Besh-

ers and Campbell (2)). The Notesfile system is used for documentation and

management. The editor can be specialized to edit many different languages and

specialized editors have been built for Pascal, ADA, PLEASE, and C. In addition

to their number, the software tools in a software environment must also have

other properties.

Software development environments need to be maintainable for the dura-

tion that they are used to support a software development project (Campbell and

Lauer (6)). The software tools in the environment must accommodate change and

modification of the environment over the lifetime of the software project. In many

applications, the software support environment and its tools must be maintained

for the duration of the maintenance of the software product; in the case of an

embedded system like the space station software system this might be for twenty

or more years. Changes in hardware technology may require the environment to

be ported to new computer systems. New tools may be integrated into the

environment. A solution to the problem of maintaining the environment and

tools for a long period of time is to design them as part of an "open architec-
ture".

In such an open architecture, modular tools are built which use standard

interface to access other tools. The approach we have adopted in SAGA is to use

the UNIX operating system to define a standard interface. UNIX processes

become the mechanism to modularize the tools. New software tools built for

UNIX can be integrated into the environment and UNIX provides a method of

migrating the environment from one computer technology to the next. UNL-_

UNITED (Brownbridge et al (5)), LINK (Russo (36)) and other distributed UNIX
systems permit the support of software development environments on networks of
workstations.

Software engineering studies reported by Bauer et al (1) suggest providing

the user with a high-level interface which reflects the levels of abstractions in pro-

gramming. By allowing the user to phrase commands in terms of high-level con-

cepts, the quality of the user's interaction with the computer can be improved.

Less time is needed to accomplish a given task, and fewer operations mean fewer

errors made during the software development process. Since users spend a large

amount of their time using editors, Scofield (38) proposed using an editor as an



appropriate program in which to implement a high-level interface.

• In the remainder of this section we discuss some of the SAGA tools that have

been developed based on these ideas.

6.1. Language-Orlented Editor

Language-oriented editors supply a high-level interface for software develop-

ment tools (Campbell and Richards (7), Campbell and Kirslis (8)). Since the edi-

tor is the primary tool for constructing software products, enhancing the editor

with features that aid the editing of specific specification languages and program-

ming languages should be beneficial to the development process. The editors can

have semantic and syntactic oriented editing commands and may help the pro-

gram development process by preventing or providing immediate diagnosis of syn-

tactic and semantic errors in the program text.

Two different approaches may be used to construct a language-oriented edi-

tor: the generator, or "template", approach and the recognizer approach. The

SAGA project has developed a recognizer-based editor. The editor incorporates

an LALR(1) parser augmented for the interactive environment with incremental

parsing techniques (Kirslis (25), Ghezzi and Mandrioli (15)). An editor generator

(25) allows editors to be generated for a particular language.

The SAGA project has demonstrated (25) that the recognizer approach is a

practical basis for constructing language-oriented editors and has several advan-

tages:

1. The recognition approach can be applied consistently to the editing of the

lexical, syntactic, and semantic components of the language. This simplifies

providing uniform editing commands that manipulate lexical, syntactic, and

semantic entities. Template editors are tedious to use if they do not use a

recognizer to enter expressions, variable names, and constants. An editing

command will differ in operation depending upon whether an entity is recog-
nized or generated.

2. The recognition approach permits arbitrary editing operations on the pro-

gram. Rectangular blocks of characters may be copied from one part of a

screen of program text to another as when initial assignments are being made

to array elements. Global string substitutions may be made. Program code

may be commented out and comments may be changed into program code.

The generator approach cannot handle arbitrary editing commands unless

the resulting edit generates text which is reparsed into a form suitable for

the editor. Problems occur when such an edit creates a lexical or syntactic
error.

3. Program editing during the debugging and maintenance phases of a project

will invariably require transforming the program through a number of illegal

lexical, syntactic, and semantic constructs. Many editors using the generator

approach expressly forbid the creation of incorrect programs. However, the

recognition approach permits illegal programs which may have many

incorrect semantic, syntactic and lexical errors. The errors may be intro-

duced in any order and may be removed in any order. When a lexical or



syntactic error is introduced, the editor can mark the discontinuity in the

corresponding token or parse tree. When an error is removed, the incremen-

tal parsing technique will examine the surrounding context of the change

only as far as it is necessary to determine that the change results in a lexi-

cally and syntactically correct program fragment. The parse tree will be

repaired in the local context of the change.

4. The recognition approach allows a lexical or syntactic entity such as a Pascal

while loop to be incrementally changed into a repeat loop whereas the gen-

erator approach must include a transformation rule to support such a

modification. Although it is simple to generate a set of useful transformation

rules, it is not clear whether it is possible to generate all useful transforma-

tions of this form.

5. The recognition approach uses existing compiler generation and parsing tech-

niques without major alteration. If standard compiler generation and pars-

ing tools are used, then many existing specifications of the lexical, syntactic,

and semantic components of a programming language can be used directly

by an editor generator facility to produce corresponding language-oriented

editors.

6. Semantic analysis is performed in most language-oriented editors using

recognition techniques that extend those developed for compilers. For exam-

ple, the attribute evaluation schemes proposed by Knuth (27) have been used

directly or encoded in a procedural manner to provide semantic evaluation of

edited programming languages (Reps et al (34)).

The SAGA editor has been used with various semantic evaluation methods.

Beshers and Campbell (2) describe an approach combining the editor with right

regular expression grammars, attributed grammars, and maintained and construc-

tor attributes. This method was proposed to overcome some of the overhead that

occurs in direct attribute evaluation schemes. A SAGA editor for a subset of Pas-

cal h_ been built that incrementally compiles Pascal programs using more con-

ventional techniques (Kimball (24)).

One of the major problems in building language-oriented editors is that they

provide an unfamiliar interface to the user. To overcome this problem, a new

version of the SAGA editor is being constructed using an EMACS editor front

end.

5.2. Notesfiles

An important software development tool for any project is a means to

record, document and retrieve information. Such a tool can be used to support

technical discussions, product reviews, problem tracking, agendas and minutes,

grievances, design and specification documentation, lists of work to be done,

appointments, news and mail. The SAGA Notesfiles system (Essick, (12)) has

been in use for some time to support all these functions within the SAGA project.

The Notesfiles system is a distributed project information base constructed

for SAGA on the UNIX operating system. A file of notes can be maintained

across a network of heterogeneous machines. Each file of notes has a topic; each
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notesfile has a title. A sequence of notes is associated with each notesfile. Notes

and responses may be exchanged between separate notesfites. Notes and responses

are documented with their authors and times of creation. Updates to the notes

and responses are transmitted among networked systems to maintain consistency.

Notesfiles use the standard electronic mail facility to facilitate the updates. A

library and standard interface permits any user program to submit a note or

response to a notesfile. This library has been particularly useful in the construc-

tion of automatic logging and error reporting facilities in test harnesses and "beta

test" uses of SAGA code.

6. Conclusion

One approach to improving the productivity of large scale software develop-

ment isto construct software systems that support the software development pro-

cess. The design of such systems requires an understanding of the principles

underlying the software development and maintenance process as well as methods

and technologies for building complex design aids. We argue that the experimen-

tal research required to build such environments should be based on formal

models of the software development process. Much research is required to pro-

duce both the appropriate formal models and the methods and techniques of

implementation and environment.

In the SAGA Project, we have been studying the construction of an environ-

ment to support the software development and maintenance. In this paper, we

have outlined some of the models being developed in association with the con-

struction of an experimental environment calledENCOMPASS.
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THE SAGA EDITOR:

A LANGUAGE-ORIENTED EDITOR

BASED ON AN INCREMENTAL LR(1) PARSER

Peter Andre Christopher Kirslis, Ph.D.

Department of Computer Science

University of Illinois at Urbana-Champaign, 1986

Dr. Roy H. Campbell, Adviser

The research described in this dissertation supports the thesis that a language-oriented edi-

tor for full programming languages, and other languages specifiable with context-free LR(1)

grammars, can be based upon an incremental LR(1) parser employing incremental analysis tech-

niques. The resulting editor is flexible, supporting a higher-level command interface which

includes structure-oriented commands involving tokens and sub-trees, while retaining common

text editing commands which operate on arbitrary groups of characters and lines. This editor

can be used to develop practical programs which incorporate software engineering principles con-

cerning the design and construction of software systems. In this dissertation, an incremental

parsing algorithm suitable for use with an interactive editor is developed. A new solution to the

handling of comments in syntax trees is proposed, and an error-recovery algorithm which per-

mits editing of the parse tree in the midst of syntax errors is presented. The resulting editor, its

commands, and environment are described. The editor can be retargeted to other languages, and

can use any parser-generating system which can meet its interface. A prototype editor which

employs these algorithms has been implemented as a part of the SAGA project as a demonstra-

tion of the practicality and flexibility of this approach; this editor has been in experimental use

during the past couple of years at the University of Illinois at Urbana-Champaign.
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PREFACE

This dissertationdetailsan alternateapproach to the syntax-directed,template driven,

language-sensitiveeditorswhich are receivingmuch attentionat present. Rather than displaying

the internaltreestructureof the program being edited_our editordisplaysthe program in text

form on the terminal screen_no non-terminalsappear. Insteadof restrictingthe editingcom-

mands to structure-onlycommands at certainpoints in the program_ and text-only at other

points_our approach permits the use ofboth structure-orientedcommands on tokens and treesl

and common text-orientedcommands on arbitrarygroups of charactersand lines,permitting

each type of command anywhere in the program. The syntax checking provided by the parser

provides feedback to the programmer about the correctnessofhisprogram as he editsit_without

requiringhim to always keep the program text syntacticallycorrector to immediately repair

syntax errorswhich arise.This combination of feedback and flexibilityshould appeal to experi-

enced programmers1 and Ibelievethatthisapproach to editingispracticaland willbe favorably

received.

An understanding of the SAGA editorand the ideasbehind itcan be obtained through a

reading of Chapters 11 31 G, and 8. More in-depth information about the internalstructureof

the parse treeand the incrementalLR(1) parsing algorithm in use can be found in Chapters 4

and 5, although a reading of thesechaptersisonly necessaryto gain insightinto how the editor

works. Chapter 5 presentsthe incrementalparsingalgorithm in enough detailto guide another

implementation of the incrementalparser,should one wish to extend tl]eideaspresented here in

!
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future work. Chapter 7 describes the generation of new editors, and the parser-generators in use

by the SAGA project. Finally, Chapter 2 contains a detailed look at some of the previous work

in the area.

A prototype editor has been produced as a demonstration of the feasibility of the ideas

presented in this dissertation, and has been in experimental use since 1982 at the University of Il-

linois. I have enjoyed the time I have spent on this research, and my contacts with other stu-

dents who have based Master's Theses and class projects upon this editor. I wish the best to the

others who will be continuing this work at the University of Illinois, and to any others who may

extend the ideas presented here.

Peter A. C. Kirslis

November, 1985
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CHAPTER 1

INTRODUCTION

Software complexity and cost are severe problems in software development. To keep costs

down, programmer productivity needs to be improved. The more powerful computers available

today permit more complex programs to be written which were previously not feasible, and pro-

grammers can now better utilize tools to receive more analysis at an earlier point in the software

development cycle. However, the existing software tools are not always adequate to manage the

large amount of software required in many new projects; new tools are needed. Properly

designed tools can improve programmer productivity, if these new hardware resources are put to

best use.

Software engineering research addresses many of the problems in software development and

offers formal results and insights to the solution of current problems. Results from software en-

gineering [Bauer et. al., 77] suggest providing the user with a high level interface which reflects

the levels of abstraction in programming. Since the user can phrase commands in terms of high

level concepts, the quality of the user's interaction with the computer can be improved. Less

time will be needed to accomplish a given task, and fewer operations mean fewer errors made

during the software development process.

Since users spend a large amount of their computer time using editors, an editor is an ap-

propriate program in which to implement a high level interface. The interface can support the

concept of structured programming. Exploiting the syntactic and semantic properties of a pro-

I
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gramming language supports levels of abstraction and allows a programmer to build his program

using either bottom-up integration or top-down refinement. Since more computing resources are

available, one approach toward providing an interface is to perform additional analysis that up

until now was done at a later time or in another program; the user benefits by receiving more

directive or diagnostic information much sooner than before.

Parsing theory is well-developed, but until recently has been applied in a static environ-

ment in which parsers are run non-interactively and take their input from a file. Parsing tech-

niques must be modified in an interactive language-oriented editor in which input is received in-

crementally from a user and a large portion of text which has already been parsed may be

modified. Initial results concerning the organization and complexity of incremental parsers have

appeared [Celentano, 78], [Ghezzi and Mandrioli, 79], [Ghezzi and Mandrloli, 80] that suggest

that such methods can be applied in practical interactive environments such as a language-

oriented editor, and that reasonable response times can be maintained while performing this in-

creased computation.

1.1. Syntax-Directed vs. Language-Oriented Editing

Language-oriented editors have been proposed to provide a high-level interface for

software development tools. Two different approaches may be used to construct language-

oriented editors. The generator approach (often called the template approach) constrains the

editing commands so that only valid programs can be developed. The recognizer approach sup-

ports both normal text editing commands and additional language-oriented commands, employ-

ing an incremental LR(1) parser to detect lexical, syntactic and semantic errors in program frag-

ments. The recognizer approach provides a more flexible editing environment for program

development and maintenance. This second approach will be presented in this dissertation.
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1.1.1. The Generator Approach

To date, much work with language-specific editors has followed the generator approach,

producing syntax-directed editors [Hansen, 70], [Donzeau-Gouge et. al, 75], [Medina-Mora and

Feller, 81], [Teitelbaum and Reps, 81], [Reiss, 84]. Such editors have a particular language struc-

ture imposed upon them, resulting in an editor driven by commands which are constrained to fol-

low the specific language structure. The user of such an editor is presented with a program skele-

ton. He selects language constructs from a menu and places them into pre-determined points in

the program display. The method constrains the user's interaction with the editor to operations

which produce error-free syntax, although semantic errors are still possible. Some typing is also

saved, since the user never types keywords or punctuation.

This approach has proven popular with implementors for several reasons. First, the user-

interface is simple; a small set of menu-driven commands permits construction of the tree in a

well-defined (error-free) manner. Second, the implementation is straightforward; since the user

is not permitted to make syntax errors, no error detection, recovery, or correction code is needed.

Third, a set of templates representing the constructs of a language can be constructed without

much difficulty. Fourth, the resulting editor is a very nice teaching tool for novice programmers,

since at each editing step, the user is channeled to a narrow path with few choices. Users can

build programs free of syntax errors more easily than with traditional text editors, which permit

syntax errors.that may be obscure to the new programmer.

However, this approach is inflexible, and modifications to existing programs can be difficult.

In order to replace one construct with another, the sub-trees first must be removed from the

template and saved somewhere, then the template deleted, another selected to replace it, and

finally, the trees re-inserted. Two examples of modifications which illustrate this difficulty are:

the addition of an else clause to an if-then statement, and the alteration of a statement to a

I
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block of two or more statements. It is also not practical to build the program entirely by selec-

tion of templates down to the lowest expression level, since the many selections needed become

tedious. Therefore, at the lowest levels of the parse tree, expressions are input from the key-

board and parsed, and certain kinds of errors are possible.

Unfortunately, syntax-directed template editors have not been accepted by experienced

programmers [Waters, 82]. In fact, one indication of the lack of utility of such editors is that the

developers of these editors do not use them themselves in their own program development. In

addition, since experienced programmers are not troubled by syntax errors, error repair is a sim-

ple and straightforward task; the restrictive editing environment provided by these editors is of

no benefit to these programmers. Commands which operate on arbitrary groups of characters or

lines are not provided. Comments also cause great difficulty to template editors. They are usu-

ally handled by permitting (or requiring) comments at certain places, and prohibiting them any-

where else. When permitted, their placement is often restricted to a certain format, and block

copying of combined syntactic structures and comments is difficult.

1.1.2. The Recognizer Approach

The recognizer approach employs some type of parser to analyze character strings entered

by the user. A recursive descent parser was used by [Wilcox et. al, 76] in an educational system,

and a bottom-up parser by [Horton, 81] in his editor; both provided text interfaces to the user,

and supported editing operations which manipulated strings of characters. When editing pro-

grams using the recognizer approach, the user typically inputs his text in free format; this input

is analyzed using an incremental parser and immediate feedback is provided about the correct-

ness of the program. With this approach, it becomes possible to specify editing operations on

syntactic and semantic entities such as tokens, sub-trees or items with particular semantic attri-

butes, in addition to operations on arbitrary groups of characters or lines. With a parser in the
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editor performing incremental compilations on portions of the parse tree, less use of the compiler

is required for detecting syntactic and semantic errors; potentially many compilation runs can be

saved since a successful compilation will result the first time that the user runs the compiler.

Still further improvement results if the editor provides the compiler the parse tree directly, and

the compiler selectively recompiles those program fragments which changed during the editing

session.

Since a recognizer is used, editing commands can be supported which take the program

through intermediate, incorrect states, which facilitates some editing operations such as the

insertion of a widely spaced begin ... end pair. It also permits the editor to provide the user

with program specific information in the form of valid continuations of a parse, which can be cal-

culated by the recogniser given the current parse state and parse stack context, so error repair is

simplified in cases when the error is not immediately obvious,

The productions of the grammar used to specify the language are user-transparent; that is,

none of the editing commands, error diagnostics, or development aids are based upon information

that is not directly representable as elements of the concrete syntax. The user sees a text-

oriented display of his program similar to the screen-oriented text editors available today; no

non-terminai symbols appear, and it is not necessary to become acquainted with the internal

grammatical structure of the production rules used to describe the language in order to

effectively use the editor.

The resulting editor is flexible, incorporating an incremental LR(1) parser with incremental

analysis techniques to analyze the user's input and provide immediate feedback about its correct-

ness. The editor supports a higher-level command interface, which includes structure-oriented

commands involving tokens and sub-trees, and retains common text editing commands, which

operate on arbitrary groups of characters and lines. In this dissertation, an incremental parsing

I
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algorithm suitable for use with an interactive editor is developed. A new solution to the handling

of comments in syntax trees is proposed, and an error-recovery algorithm which permits editing

of the parse tree in the midst of syntax errors is presented. A prototype editor which employs

these algorithms was implemented beginning in 1981 as a demonstration of the practicality and

flexibility of this approach; this editor has been in experimental use over the past couple of years.

1.2. The SAGA Project

The SAGA (Software Automation, Generation, and Administration) project is investigating

formal and practical aspects of computer-aided support for program development in the software

life cycle [Campbell and Kirslis, 84], [Campbell and Richards, 81]. The goal of the project is to

design a practical software development environment that supports all major phases of the life

cycle. The design of the system requires facilities to allow the construction of a language-

oriented editor for a large class of formal languages including many programming languages,

specification languages and design languages. The language-oriented editor presented in this

dissertation is the editor of the SAGA project, and will at times he referred to as the SAGA edi-

tor.

The SAGA editor provides a means by which the syntactic and semantic properties of a

programming language (or other formal language) can be exploited to provide a more useful in-

teractive environment for the user. Character, line, and screen editing commands are augmented

by commands based on the syntax and semantics of the particular language being edited. Frag-

ments of the edited text may be selected by their syntactic (and eventually semantic) structure

and moved, copied, deleted, or even transformed into other well-defined syntactic constructs.

The same properties may be exploited to constrain a programmer to structure the development

of a program using a particular methodology if desired. The editor is being applied in a software

development environment of coordinated tools [Kirslis et al., 85]. The environment provides ad-
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ditional support for the management of software development.

Structured editing can also be applied to abstract specification languages. The editor can

be used to enter and verify sentences in the language; other software tools can use the structures

generated by the editor to verify both the specifications and subsequent programs written to im-

plement them. In each case, providing the higher level interface lets the user deal productively

with relevant concepts instead of lower level components; fewer operations are needed, fewer er-

rors will be made, and less time will be needed to accomplish the task.

1.3. Chapter Summary

The remainder of this dissertation discusses the design and structure of an editor based

upon an incremental LR(1) parser. Chapter 2 relates some recent previous work. in Chapter 3,

Shift/reduce parsing is reviewed, with an emphasis on attributes of a parse tree node that can be

added to provide support for incremental parsing. Some possible parse tree structures are inves-

tigated in Chapter 4, and one chosen which will best support the incremental parser, permit the

editor to operate directly from ttie parse tree, and support related software development tools to

be used in the SAGA environment. The incremental LR parser proposed by Ghezzi and Man-

drioli is taken as a starting point in Chapter 5, and the extensions necessary to support an editor

with incremental parsing are presented and discussed. The integration of the incremental parser

with the editor, the basic text and structure editing capabilities, flexibility of the user interface,

and the design of the SAGA editor as a hierarchy of modules are presented in Chapter 6.

Chapter' 7 describes the SAGA editor generating facility, which permits the use of different

parser-generator and compiler-generator systems to automatically construct a SAGA editor for

formally specified languages. The lexical, syntactic, and semantic analyses are performed by

separate modules within the editor, each containing logically independent data structures. This

independence is required in order to effectively implement separate incremental lexical, syntactic,

I
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and semantic analysis. It permits reuse of the remaining editor modules whenever an editor is

constructed for a new language, since none of these modules contain any language-specific infor-

mation. Finally, Chapter 8 presents the conclusions from this research, describes some applica-

tions in which the editor has already been tested in the SAGA development environment, and

suggests some future work.
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CHAPTER 2

PREVIOUS WORK

The idea of an editor for formally specified structured data is not a new one. In the late

1960s, attention was directed to the editing of general hierarchies of text [Englebart and English,

68] and sections of annotated, linked text [Carmody et al, 68]. In 1971, Hansen used an extended

BNF formalism to describe hierarchic text, and produced EMILY, a template editor for struc-

tured programs, but which was retargetable to other formally specified structures [Hansen, 71].

A user of EMILY generated programs by the application of syntactic rules. The user select-

ed syntactic constructs from a menu, building a tree from the root out to the leaves in successive

refinement steps. EMILY was based on two principles: aelection not entry, applied to text con-

struction and operation invocation, and predictaS[e 5ehavior, which used a small set of concepts

that a user can perceive with a little practice.

The extended BNF formalism provided three features: indentation and carriage-returns

could be specified for the formatting of the display; conditional display operations could test con-

tents of sub-nodes and the identifier of the parent of the node to provide flexible display opera-

tions; and identifier and block structure could be described in the formalism so that the system

could keep track of all references to identifiers. EMILY also supported the elision of selected lines

of the display, which Hansen termed ho[ophrasting; he also defined a visible marker, the hoio-

phrast, to represent the elided subtrees on the display.

I
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The languages implemented for EMILY were PL/I, GEDANKEN [Reynolds, 70], a hierar-

chy language for thesis outlines, and the Emily syntax language. Emily was written in PL/I, and

implemented on an IBM 2250 Graphics Display Unit attached to an IBM 360 Model 75. Hansen

found that program construction took longer than with a text editor, but that the user made

fewer mistakes. EMILY consumed too many CPU cycles and memory to be practical at the

time, but Hansen postulatedthat with decreasingcomputer and increasinghuman costs,his ap-

proach would eventuallybecome more feasible,and historyhas shown him to be correct.

In 1975,Donzeau-Gouge, Huet, Kahn, Lang, and Levy produced a texteditorspecialized

foreditingprogram texts,and applieditto the Pascalprogramming language. Itwas a firststep

in buildingwhat became the MENTOR programming environment at INRIA-LABORIA, inRoc-

quencourt,France [Donzeau-Gouge etal.,75,79, 80]. In theirsystem, programs were manipulat-

ed as abstractobjects;no parse treeexisted.The abstractobjectswere labeledtrees,alsocalled

operator-operand trees,in which internalnodes are operators. The programs were written in a

concrete syntaz, but stored in an abstract syntaz tree. An unparser was used to regenerate the

program. The user of the editor used structural addresses to specify sub-trees. A constructor

performed syntax analysis, to permit pre-existing code to be edited. A separate process later

performed semantic analysis.

The user looked at sub-trees through a window, and an integer n, the holophrasting depth,

was attached to the sub-tree to specify the level of detail to display. Long lists could be rolled;

the beginning and end hidden, with a portion of the middle displayed. Comments could be at-

tached to a node, either as a prefix or postfix. Comments were not normally displayed, but could

be called up. Evaluators computed on the abstract tree. Their editor was written in Pascal.

A table-driven, interactive, diagnostic programming system, CAPS, was produced by Wil-

cox, Davis, and Tindall in 1976 [Wilcox et al., 76]. CAPS was a highly interactive, menu-driven
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editor, diagnostic compiler and interpreter which was used to prepare, debug, and execute simple

programs. Errors were diagnosed both at compile and run time. The analysis was performed

character by character; when an error occurred, a box was flashed around the invalid character,

any additional input data was ignored, and CAPS began an interaction with the student to find

the cause of the error. The user could back up the cursor to erase the box and resume editing, or

press a HELP key for auto-generated diagnostic assistance. The first press of the HELP key

displayed an error message; Subsequent presses suggested possible repairs. CAPS employed a

recursive-descent parser with complete syntax checking. The internal representation was a list

of tokens, including spacing information and comments. Static semantic analysis was also per-

formed. Execution interpretation included a trace facility and run-time error analysis. CAPS

was table-driven and could be retargeted to other languages. New interpreters had to be

designed and implemented for a new language, but many modules could be reused, since the

internal structure had the same form, regardless of the language. CAPS was available for For-

tran, PL/I, and COBOL. It was implemented on the PLATO IV Computer-Based Education

System at the University of Illinois at Urbana-Champaign.

In 1977, Teitelman produced INTERLISP, a display-oriented programmer's assistant

[Teitelman, 77]. It was a programming system for LISP, based on interpretation, with emphasis

on the debugging and execution of programs. An interpreter linked program pieces for execution.

A system debugger worked by interpreting code. Code pieces could be compiled, but the de-

bugger only accessed the interpreted code.

In the late 1970s, Teitelbaum designed and built the Cornell Program Synthesizer [Teitel-

baum, 79], [Teitelbaum and Reps, 81]. The Synthesizer provides a syntax-directed programming

environment. It incorporates a grammar via templates which are predefined in the editor. Pro-

grams are created top-down. New templates are inserted within the skeleton of previously en-
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tered templates. However, phrases (assignment statements, expressions, and lists of variables)

are entered directly as text. Programs are translated into interpretable form during program en-

try. Program development and testing can be interleaved; interpretation is suspended when an

unexpanded placeholder is encountered; it can be resumed after the placeholder is expanded. A

batch LR parser is used at the expression level. Errors are detected as soon as the user moves

the editing cursor out of a field; the cursor is positioned at the point of the error. Modifications

are performed by the clip, delete, and insert commands. For example, to change a statement

into a block of two statements: the statement is clipped and replaced by the original placeholder,

a block template is selected, the clipped statement is inserted, and the new statement added. Se-

mantic analysis is performed through an incremental attribute re-evaluation scheme [Reps, 82].

The Synthesizer has been shown to be a good educational tool: it has been used in introductory

programming courses at several universities since June 1979. It has been used with the language

PL/CS [Conway and Constable, 76], a subset of PL/I.

The Synthesizer is limited in utility in that editing operations (modifications, moving, copy-

ing) are cumbersome and not likely to be favored by experienced programmers. Simple text edit-

ing commands are limited to phrases only. It cannot be used with pre-existing software because

there is no way provided to convert fragments into template form. Comments can only be in-

serted at selected locations, and are required in certain locations. The Synthesizer employs a hy-

brid approach: recursive descent at high levels (templates), and parsing of character strings at

low levels (phrases).

Unlike the Cornell Program Synthesizer, the BABEL editor by Horton [Horton, 81]

presents a text-like interface to the user, and provides commands which operate on sequences of

characters. It performs lexical analysis on the input text, producing a list of tokens, can perform

optional checking of the syntax based on an earlier Ghezzi & Mafidrioli parsing algorithm pub-
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lished in 1979 [Ghezzi and Mandrioli, 79], and can also perform optional semantic checking using

Reps' algorithm. This algorithm operates on grammars of the class LR(1) N RL(1). That is, the

grammar must be LR(1) and the reversed grammar, obtained by reversing the right hand sides of

all of the productions, must also be LR(1). The algorithm uses both left-thread and right-thread

pointers to store parser state information; Horton replaced some of the links with access routines

to generate them in order to save space. Comments are handled by attaching them to the follow-

ing token. Programs are not permitted to be incomplete, and it is not possible to place unex-

panded non-terminals in the tree (that is, there are no placeholders.) Horton defined a Language

Description Language (LDL) to specify the language for which an editor is to be built; a modified

yacc parser is used to produce the parse tables.

Horton reported that in BABEL, the running time required to perform syntax checking is 5

times as much as that taken by the vi text editor [Joy and Horton, 80] to perform the same edit-

ing operation (with no analysis). Semantic checking is 15 times slower when an executable state-

ment is changed; when a declaration is changed, it is slower by a _much larger factor"

(unspecified). (Horton reports on one example with semantic analysis which took 62 times as

much processing). BABEL trees without semantic information average 30 times the size of the

equivalent text file; with semantic information, the size increases to 300 times.

At Carnegie-Mellon, Medina-Morn and Feller have produced an editor as part of the Incre-

mental Programming Environment (IPE) [Medina-Morn and Feiler, 81]. The environment con-

sists of several tools: the editor, translator, linker and loader, and debugger. The user interacts

with the entire system through the editor; other tools are invoked by the editor as needed. The

editor is syntax-directed; the programmer constructs his program by inserting templates, and

syntactic correctness is enforced. The editor represents the program internally as an abstract

syntaz tree. An unparser translates the tree back into readable text to present the programmer

I
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with his program. Semantic correctness is not enforced; semantic checking routines perform

further analysis, and are automatically invoked.

Their system supports incremental program translation. The program is debugged with a

language-oriented debugger. A syntax-directed editor generator is used to prepare additional ed-

itors. IPE provides an environment for a single programmer working on a single program. IPE

is a component of the Gandalf project, which coordinates programmers and versions of programs

[Habermann, 79]. The language supported is GC, a type-checked variation of C [Kernighan and

Ritchie, 78] with modular structure. Language descriptions also have been prepared for a subset

of Ada; Alfa, an non-Algol-like applicative language designed by Habermann; the system

language of Gandalf; and the grammatical description itself. An IPE prototype is running under

UNIX on a VAX. Medina-Mora and Feller have found that new users need to get used to the

structured editing approach; expression entering and editing is more difficult than text editing;

preexisting code cannot be used unless a parser is built to perform a preprocessing pass to con-

vert it into tree form.

At the University of Illinois, Oralloglu has reviewed the design issues involved in the

development of hierarchical editors, and has produced an editor which employs a modified LL(1)

predictive parser [Oralloglu, 83]. He incorporates language-specific information through a user-

specified grammar with incomplete productions. The user interface of the editor permits move-

ment by characters, words, lines, and from one node to another within the surrounding tree

structure. Text characters entered by the user are inserted at the position of the cursor; a delete

key deletes the character, word, line, or tree at which the cursor is positioned. User-supplied

pretty printing information can be specified in the language description; comments, however, are

not pretty printed. Lexical analysis, syntax analysis, and pretty printing are performed charac-

ter by character; detection of an error causes the remaining input to be displayed in reverse video
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as the user continues typing. No semantic analysis is performed.

Shilling has extended Orailoglu's editor with a combination of follow-the-cursor parsing,

which parses only the characters up to the editing cursor, and soft templates, which appear fol-

lowing the cursor to indicate the non-terminals the parser is expecting but has not yet had com-

pleted by the parser [Shilling, 85]. The templates are soft in that the user is not obligated to fol-

low them. Shilling is also adding semantic analysis based upon attribute grammars and the at-

tribute update algorithm of Reps. The editor has language description grammars for Cobol, For-

tran, Pascal, C, and some other languages; it is implemented on several systems which run the

4.2BSD UNIX operating system.

There have been other efforts toward improving the editing process or the:software

development environment in similar ways [Fraser, 81], [Morris and Schwartz, 81], [Osterweil, 82,

83] and [Osterweil and Cowell, 83]. A number of reviews survey the field of editors, summarizing

many efforts [Meyrowitz and van Dam, 82], [Reid and Hanson, 81] and [van Dam and Rice, 71],

and will be of interest to the reader desiring more detailed background information.

The development of structure-oriented editors has been monitored by several individuals,

who have made the following observations. Waters, at MIT, notes that early implementations of

syntax-directed editors have been overly restrictive, and that the criticisms about them are gen-

erally valid. He believes that the editors need time to mature, and could become quite attractive

to use at some point in the future. He is firm that text oriented commands should not be re-

placed, but augmented with structure-oriented commands [Waters, 82].

Meyrowitz and van Dam, at Brown University, note that a well-defined, consistent, concep-

tual model is needed, instead of the ad hoe methods used today. Documentation is needed which

explains the conceptual model and the user interface. A clear, concise, orthogonal user interface

that is easy to learn is needed. Today, interfaces are haphazard and contradictory. The sharing

I



16

of project information and files among a group in a controlled way is also needed [Meyrowitz and

van Dam, 82].

The SAGA editor addresses many of these points. Because it is based upon an incremental

parser, its user interface is much more flexible than that which has been provided by structure

editors. Text-oriented commands have not been replaced, but retained and augmented with

structure-oriented commands. The user interface is concise and orthogonal, permitting the

specification of groups of characters, tokens, lines, and sub-trees, and applying all built-in opera-

tions to all argument types which make sense. Comments are handled as any other token, and

not treated as a special case as in all other systems to date. We believe that we also have a solu-

tion to the sharing of project information and files among a group through an Integrated Modular

Environment [Kirslis et al., 85]; we have defined a model, representation, and implementation for

an environment which can be used with many standard software development tools available to-

day, and with which additional benefits are possible when combined with a language-oriented ed-

itor such as the SAGA editor. The approach we have taken has already yielded a prototype

language-oriented editor and environment. We believe that the editor and support environment

has practical application in software development, and we believe that it will be possible to refine

these prototype tools into a usable system with significant benefit to software engineers.
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CHAPTER 3

SHIFT-REDUCE PARSING

We begin our discussion of parsing with a quick review of shift-reduce parsing, also called

LRCk_ parsing; we then describe a left threading of a parse tree which will be of great use when we

turn our attention to incremental parsing. 1 In LRCkJ parsing, the k refers to the number of sym-

bols at the head of the input string that are passed to the parser to enable it to determine the

parsing action; these symbols are termed the lookahead of the parser. The languages in which we

are interested can be defined by LR grammars with k ---- 1, so we will restrict our discussion to

this class. 2 A subset of LR(I) grammars, termed LALR(I) grammars, is of particular interest to

us, since the parse tables produced for this class are much smaller and better suited for practical

use.

3.1. PreHmlnary Definitions

LR parsers are driven from tables which can be algorithmically generated from a formal

specification of the language. Programs which apply these algorithms and produce these tables

are called parser-generators. Since the specific techniques and algorithms used by parser-

generators are well documented elsewhere and are not necessary for the understanding of

1Readers unfamiliar with LR(k] parsing can find an introduction to the subject in [Aho and Ullman,

77], especially Chapter 5. In this discussion, we assume the reader is familiar with shift/reduce parsing no-
tation as defined in [Aho and Ullman, 72].

2If there is an interest in a language described by an LR grammar with k ) I, and if a parser-

generator is available which will process the grammar, it would be a simple matter to modify the editor to
pass to the parser a list of lookaheads. The incremental parsing algorithm is not affected.
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language-oriented editing being presented in this dissertation, a discussion of these techniques is

omitted. The reader may consult [Aho and Ullman, 77] for more information about this topic.

The formal specification of a language can take a number of forms. Two of the parser-

generators used by the SAGA project [Noonan and Collins, 84], [Miekunas, 86] use a context-free

grammar in Backus-Naur Form (BNF) as a specification. A third parser-generator, presently

under construction, will take an extended BNF specification [Beshers, 84]. For simplicity, we will

only discuss BNF syntax, since the extended BNF can always be rewritten in this form.

BNF notation provides a means to write a formal description of a language for which we

wish to construct a parser. The description is given as a context-free grammar G, which is

defined to be the four-tuple (N, _, P, S), where N is the finite non-empty set of non-terminal

symbols, _ is the finite set of terminal symbols, P is the finite set of productions A _ c_, where

A E N and a' E (N U _)*, and S E N is a distinguished non-terminal termed the start symbol

[Hopcroft and Ullman, 79]. The sets N and _ are disjoint; that is, N N _ = O (the empty set).

Additionally, N U P- is conventionally denoted as V. See Figure 3-1 for an example of a gram-

mar.
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<S> ::= <E> (1)

<E> ::= <E> + <E> (2)

<E> ::= <E> * <E> (3)

<E> ::= ident (4)

<E> ::= integer (5)

<E> ::= ( <E> ) (6)

Figure 3-1: An (Ambiguous) Grammar for Simple Expressions. G -----(N, _, P, <S>),

where N = (<S>, <E>), P. = (ident, integer, +, *, '(', ')'), P is shown above, and
< S > is the start symbol.
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A string over V is a finite sequence of symbols from V. V* denotes the set of all strings

from V, including the empty string % with V+ _-_ V* - { _ }. If o _, %/3 E V*, and A E N, then

o A/3 directly derives cr'7/3, denoted o'A/3 _ o_7/3, where =_ is a relation between strings in V*,

and A _ "_is a production in the grammar. (The production A --_ _/is applied to the string (_A/3

to yield o"7/_.)

If _1' _t' "", _m are strings in V*, and

then a' 1 derives c_,., denoted a' 1 =_ a,a. By convention, c_ _ c_.

A derivation tree D for a context--free grammar G _ (N, _, P, S) is a labeled ordered tree

in which each node is labeled by a symbol from V; if A labels an interior node and B1, ..., B n la-

bel the immediate descendants, then A --+ B 1 B e ... B n is a production in P.

The frontier of a derivation tree is the string w --_ wI w e ... wn, where the w i E _.. are the

labels of the terminal nodes read left to right.

Given a context free grammar G with start symbol S, the language generated by G, denot-

ed L(G), consists of all strings of terminals w such that S _> w. A sentcntial form _ of G is a

string of terminals and/or nonterminals such that S _> cT.

A rightmost derivation is a derivation in which the rightmost nonterminal in a sentential

form is replaced at each step in the derivation. Such a derivation is denoted by c_ r=_/_ if a single

step is taken, c_ r=_ /3 if zero or more steps are taken, and c_ _ /_ if at least one and possibly

more steps are taken. A right sentential form a' is a sentential form generated from the start

symbol S by a rightmost derivation.

It can be determined whether a string of terminal symbols from G is a sentence in L(G) by

performing the reverse of a rightmost derivation on the terminal string. A program to perform
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such an analysis in limited cases of context free languages is termed an LR parser, which consists

of a driver routine to perform the parsing, a set of named or numbered parse tables to direct the

parse, a parse stack on which to store the intermediate results, and an input from which to read

the string to be parsed. 3 The parser is assigned a parse state which identifies one of the parse

tables as the table to reference at the current step in the parse. One of these states is dis-

tinguished as the initial state in which the parser is to begin execution.

A configuration of an LR parse._ for a grammar G is an ordered pair (K, I), where K

represents the contents of the parse stack and I is the input not yet f_ ._ by the parser. Each en-

try on the parse stack K consists of a symbol Y followed by a parse state P, where

Y E V U bof U eof.

The special symbols bof and eof serve as leftand right pads, respectively,to delimit the contents

of the stack and the input. 4

3.2. Shift-Reduce Parsing

Given a grammar that describes a language, and a parser-generator to produce parse tables

from that grammar, we can build a parser which uses those tables to analyze strings in the

language. We illustrate the opera/,ion of this parser with an example of the parsing of a string in

the language generated by the grammar given in Figure 3-1. In this grammar, the ident symbol

represents an alphanumeric identifier, and the integer symbol represents an integer.

SThe LR in LR parmer stands for Left-to-richt scan of the input and construction of a Rightmost
derivation in reverse.

4The use of a left and right pad theoretically restricts us to strict deterministic context-free languages

with end markers, and also less than full LR parsers, since the parser should only check that the input is

exhausted once it has decided to accept the input already scanned. But this restriction is of no practical

significance. During initialisation of the editor, the parser is called with the empty string to produce an in-

itial tree which provides a uniform context for subsequent editing. An eof symbol is always present at the

right end of the parse tree frontier, and so is always passed to the parser whenever the end of the parse

tree is reached. While the parser always will be passed both a parse state and this eofsymbol when the in-

put has been exhausted, it is not required to look at this symbol, and can behave in the above manner. In

addition, grammars need not include the end markers; the choice is left to the parser-generating system.
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Assume that the grammar given in Figure 3-1 has been processed by a parser-generating

system to produce the set of parse tables given in Table 3-1. We are not concerned here with

how the tables are produced from the grammar; such techniques are well-understood, and the

reader can find these details in [Aho and Ullman, 77] if interested. In Table 3-1, each row is a

single parse table. The parser begins in state 1, and enters other states as directed by entries in

the table for its current state. There is a single column for each terminal and non-terminal sym-

bol in the grammar. The parser reads a symbol from the input; this symbol becomes the looka-

head symbol which is used to select an entry from the parse table to direct the parser's next step.

Given this set of parse tables and an input string to be parsed, the parser begins in an ini-

tial configuration (K, I) which is given by the 2-tuple with only the bof (beginning of file) token

and initial parse state stored in the stack component K, and the input string in the second com-

ponent I. At each step in the parse, the parse state on the top of the stack is the current state of

the parser, and the first token in the input string is the lookahead symbol.

I
i
I
i
I
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State

1
2
3
4
5
6
7
8
9
10
11

id +

slO
S

E s6 s5

( slO
* sl0
+ slO
E s8 s5
E r4 s5
E r5 r5
id r6 r6

) r8 r8

Action

* ( )
s4

s4
s4
s4

eof S E

r2 s2 s3

_c
r3

s7
s9
s8

sll
r4

r5 r5
r6 r6
r8 r8

Table 3-1: LR(O) parsing tables for the simple expression grammar given in Figure 3-1.
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Four types of parsing actions are shown in the parse tables: shift (s), reduce (r), accept

(acc), and error (blank). When a shift action is indicated, the parser removes the input token

from the second component of the tuple and pushes it onto the stack (the first component) to-

gether with the state given in the parse table with the shift action. This state becomes the new

state of the parser.

When a reduce action is indicated, .the parser uses the associated number to determine

which production rule of the grammar is to be used to perform the reduction. The parser pops

the entries corresponding to the right hand side of the rule off the stack, and then prepends the

token code corresponding to the left hand side of the production rule to the head of the input in

the second component.

Standard parsers at this point typically replace the tokens and states corresponding to the

right hand side of the production rule with the non-terminal on the left hand side of the produc-

tion rule and the new parse state. The new state is determined by applying a goto function to the

state uncovered on the parse stack after the right hand side of the production rule has been re-

moved, and the non-terminal on the left hand side of the production. The goto function will al-

ways return a shift action, and there can never be an error when it is computed. But by prepend-

ing the non-terminal to the head of the input stream instead of continuing with the reduction in

this manner, the next action that the parser will perform will be exactly this goto function. By

having the parser treat the goto function as the standard parsing action, instead of separating it

out as a special case, we gain the ability to have non-terminal nodes treated identically to termi-

nal nodes. This uniformity is important, since it permits the SAGA editor to pass previously

parsed sub-trees to the parser intact to be inserted into the parse tree at a new location. The

contents of this (potentially large) sub-tree need not be reparsed, saving computation time, and

we can provide an editing command to move sub-trees around easily in the editor.
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Move (Stack, Input) Action

0 (boil, a * z + b eoJ)
la (boll, a * z + b eoJ) slO
lb (boll a 10, * z + b so/) r6
2 (boll, <E> *z + b eoj_ s3
3 (boll <E> s, * = + b ,o/) ,5
4a (boil <_E_> 3 *5, z ÷ b so/) slO
45 (boil <E> S * S z lO, + b so�) r6
5a (boll _E_> 8 "5,' <_E_> + b eoj) s9
5b (boll <E> 8 *5 <E> 9, ÷ b eoj) r5
s (bo/1, <E> + b ,o/) s3
7 (bo/1 <E> S, + b so�) s6
Sa (bo/1 <E> S + O, b eoJ) o10
8b (boll <E> S ÷ P b ]0, sol) r6
9 (bo/I <E> s + 8, <F,> so�) ,8

10 (boll <E> 8 ÷ 6 <E> 8, eoj_ r4
11 (boll, <E> so/) s3
12 (boll <F,> S, so�) r3
13 (bo/1, <S> so�) s2
14 (bof I <S> P., so/) acc

Figure 3-2: Configurations through which the parser passes during an LR parse of the input
string: a * z + b. The current parse state is stored on the top of the stack, and the lookahead
symbol is at the head of the input. The simple expression grammar is given in Figure 3-1, and
the set of parse tables produced from this grammar in Table 3-1.
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An accept action tells the parser to terminate and accept the input string as a legal sen-

tence in the grammar. When the parser terminates in this way, the start symbol of the grammar

will be the only token on the parse stack (not counting the bof token which is always present),

and the eoftoken will be the only token remaining in the input string.

A blank entry in the table indicates that an error has occurred; in this case the parser ter-

minates and rejects the string as a non-sentence in the language. 5

Sin the case of the SAGA editor, the parser invokes an error handler to save the information necessary
to enable the parser to resume the parse at a later time, and to enable the editor to display this portion of
the tree in the meantime.

!
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_---top-o/-stack
input----a * x+b eof

(a) Initial Configuration of the Parser

_ t.op.o f-6tac k
input ---- * x + b eof

(b) Parser State Before Move lb.

input----* x+b eof

(c) Parser State Before Move 3.

top-of-stack

input = x + b eof

eft thread pointers
< .... leftson and sibling pointers

......... parent pointers

(d) Parser State Before Move 4a.

Figure 3-3: Construction of the parse tree for the first few moves shown in Figure 3-2. The

numbers in the nodes refer to the state of the parser just after a shift action was performed with
that node.

Let us now consider the input string a * z + b. Figure 3-2 shows the moves that our parser

makes at each step in the parse. The first row in the table shows the initial configuration of the

parser. At each step in the parse, the rightmost number in the first component is the parser's

current state, and the leftmost symbol in the second component is the lookahead symbol at the

head of the unread input string. At the conclusion of this successful parse, the stack contains
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only the bofsymbol and the start symbol, and the input string only the eofsymbol.

3.3. Constructing the Parse Tree

The approach used by the SAGA editor's parser is similar to the one described above, ex-

cept that a parse tree actually is constructed during the parsing operation. In addition, no ezpli-

eit parse stack is used by the editor's parser. Instead, the parse stack is directly incorporated

into the parse tree as it is constructed. Each parse tree node is augmented with a left thread at-

tribute, which contains a pointer to the node that would be directly beneath this one on a parse

stack if one were used. A top-of-stack variable points to the node which would be on the top of

this stack at each point in the parse. Figure 3-3 illustrates the parse tree and input string mani-

pulated by the parser for the first few moves of the parse given in Figure 3-2. Figure 3-4

presents the completed parse tree constructed by the parser for this input string.

In Figure 3-4, the reader should take note of the left thread pointers, shown as solid ar-

rows, which connect the nodes of the tree. The number in each node is the new parse state of the

Legend:

_1 J ,__ _ left thread pointers

t
i Figure 3-4: The parse tree constructed for a * z ÷ b.
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parser just after that node is shifted. By storing these two pieces of information in the parse

tree, each and every configuration through which the parser has passed during the entire parse is

captured. By setting the top-of-stack variable to any of these nodes, and the parser state to the

state found in that node, we recreate the exact configuration the parser was in at this point in the

parse, just as though we had begun the parse from scratch and proceeded up to this point, paus-

ing just after this node had been shifted. This ability to recreate any intermediate configuration

quickly in the parse is central to the editor's ability to efficiently and incrementally reparse a

user's modifications as they are made. The ability to terminate the reparse after the

modification is complete, and not completely reparse the remainder of the program is also re-

quired if this approach is to prove feasible to use. The incremental parser also has this second

property, but we will defer discussion of it until Chapter 5, when the incremental parsing algo-

rithm is discussed in detail.
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CHAPTER 4

PARSE TREE STRUCTURE

In chapter 3, construction of a parse tree was discussed. In this chapter, we will look at

some possible parse tree structures and then decide upon the one to be used with the incremental

parsing algorithm to be presented in chapter 5. To avoid implementation complexity, it is desir-

able to have the editor use the parse tree structure directly instead of maintaining both a parse

tree and equivalent text representation and then maintaining the consistency between them.

Therefore, the parse tree must be able to support both the incremental parsing algorithm and the

editor's command interpreter and display module.

The parse tree proposed by [Ghezzi and Mandrioli, 80] is sufficient to support their parsing

algorithm, but is not suitable for use with an editor since a number of operations are required

which cannot be performed efficiently using their structure. In particular, the editor's command

interpreter requires the ability to move from node to node throughout the tree in response to

user commands which select token sequences and sub-trees for editing. In addition, the editor's

display module needs a convenient and efficient way to sequentially access the terminal nodes in

the tree to generate the display; it is much too inefficient to force a walk through the internal

structure of the tree in order to retrieve these terminal nodes.

We will begin with a summary of common tree traversal methods for both binary trees and

trees. By tree, we mean an ordered tree in which each non-terminal node has one or more chil-

dren in a particular order from left to right, as opposed to an oriented tree in which no ordering

!
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is imposed upon the children. By binary tree,we mean an ordered tree in which each internal

node has at most two children, distinguished as the left child and the right child. Then we will

review the parse tree structure proposed by Ghezzi and Mandrioli and show what access routines

their structures require to support the traversals,and what difficultiesarise. Lastly, we propose

improvements to their linking structure, and show how the modified linking structure better sup-

ports the tree traversals and editor tree access.

4.1. Traversing the Parse Tree

Tree traversal algorithms visiteach node in the tree in some order. Recursive or iterative

programs can easilybe written which visiteach node and itssub-trees. Three common traversal

methods for binary trees are listedin Table 4-1, headed by some of the names commonly used to

refer to them. These traversMs assume that each internal node in the binary tree contains

pointers to itsleftand right children. The editor'sparse tree isactually implemented as a binary

tree by using a standard correspondence between trees and binary trees [Knuth, 73]. Therefore,

programs which need to visiteach node of the tree and can use a binary tree traversal may do so

if a simpler program results. However, the parse tree should conceptually be thought of as a

(non-binary) tree since each internal node has one, two or more children, and a given traversal

algorithm willvisitthe nodes in a tree in a differentorder, depending upon the way in which the
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preorder

depth-_rat order

visitthe node

traversethe leftsubtree

traversethe rightsubtree

inorder

symmetric order

lezieographie order

traverse the left subtree

visit the node

traverse the right subtree

postorder
endorder

bottom up order

traverse the left subtree

traverse the right subtree
visitthe node

Table 4-1: Some binary tree traversal methods.
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treeisviewed. Therefore,we willnot speak of the leftand rightsons of a node, but of the chil-

dren of a node, and a node with n childrenwillhave n subtreesto be visited.Using thistree

structure,the preorder and postordertraversalsmay be describedas shown in Table 4-2. There

isno simple equivalentfor inorder,sincethe root node needs to be visitedsomewhere in between

the visitsto the firstand lastchildren.

4.2. The Ghessi and Mandrioli Parse Tree

In the Ghezzi and Mandrioli parse tree, nodes are linked together by four types of links:

ithread (left thread), parent, rmost (rightmost sibling) and rdeacend (rightmost descendant).

These links are all that are required to support an incremental parser; thus the leftmost son and

sibling links, shown in the parse trees presented in Chapter 3, do not exist in this tree. The

lthread link is identical to the left thread link previously described; it points to the node which

was shifted by the parser immediately preceding this one. Each node in the tree points to its

parent through its parent link, and to the rightmost sibling in its production through its rmost

link. Lastly, each node points to the terminal node at the right end of its sub-tree through its

rdescend link.

Unfortunately, we have no pointers to any of the subtrees to use for the tree traversals, ex-

cept for the single pointer to the rightmost descendant. So either a new method for traversal

must be devised which uses only those links which are available, or the left and right son links of

!
I

preorder
visit the node
traverse the subtrees

postorder
traverse the subtrees
visit the node

Table 4-2: Equivalent tree traversal methods for preorder and poetorder traversals.

!
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a binary tree must be simulated in some fashion. By providing functions to return the leftson

and right sibling of a node, we can implement the above traversals without requiring any other

links in the tree.

4.2.1. Retrieving the Right Sibling of a Node

With this tree structure, the right sibling of a node may be determined by accessing only

the rmost and lthread attributes in the tree. For the nodes which are children of a single parent,

the lthread attribute links each child except the leftmost son to its left brother (the leftmost son

is linked to the left sibling of its closest ancestor with a left sibling). Using these two links, we

can construct a function which returns the right sibling (hereafter referred to simply as the si-

bling) of a node, or nil if the node is itself a rightmost sibling. This function is presented in Fig-

ure 4-1.

Algorithm 4-1: Retrieve the Right Sibling of a Node

sibling(N):
Input: A parse tree node pointer.

Output: A pointer to the sibling of the node, or nil if none exists.

• Let Xbe a pointer to a parse tree node.

X *-- rmost()¢); 1
if X = _ then 1

return(nil); 0

while _ _ lthread(X) R

X = lthread(X); R - 1

return(X). 1

Figure 4-1: Given a parse tree whose nodes are linked together only by parent, lthread,

rmost, and rdescend links, retrieve the right sibling of a node. The column to the right
counts the number of times each statement is executed, under the assumption that _/is

not itself a rightmost sibling. (If J_ is a rightmost sibling, then the running time is 3,

since only the first three lines are executed.)
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4.2.1.1. Discussion of Algorithm 4-1

Given any node in a completed parse tree, this algorithm will always return the right si-

bling of a node if one exists, or nil otherwise. This can be seen as follows: Let _/be a node in the

parse tree. If _ is the rightmost child in some production, then its rmost attribute will have been

set to itself when this portion of the tree was built, X will test equal to _/, and nil will be re-

turned, ff _/is not the rightmost child in some production, then its rmost attribute will have

been set to the node which is the rightmost in the production. The while loop above will succeed

in locating the next sibling of )1 if and only if _/appears on the lthread list beginning at rmost(_),

and is located immediately after the node which is its next sibling.

_/does appear on this lthread list because an LR parser constructs the parse tree by a se-

quence of operations which correspond to the reverse of a rightmost derivation of the terminal

string represented by the parse tree. In a rightmost derivation, the rightmost non-terminal is re-

placed at each step. The right--sentential form produced in this way can be written as S _ (_w,

where _ consists of a mixture of both non-terminal and terminal symbols, while tv consists only

of terminal symbols. As an LR parse progresses, (_ will.correspond to the contents of the parse

stack, and t0 to the unexpended input :string. Each node on the parse stack corresponding to a

symbol in _ will have its lthread attribute set to the node which represents the symbol to its left

in _, since the nodes in this list are by definition those on the parse stack.

In addition, if _ _ _/fl, and B --*/3 is a production in the grammar, where fl is on the top of

the parse stack, then fl is called a handle. Whenever the parser recognizes a handle /3 on the

parse stack, it performs the reduction B ---,/3, replacing/3 with the non-terminal B. Because the

reverse of a rightmost derivation is being performed, the symbols that comprise fl are exactly the

immediate children of the production B --+/3. Therefore, the first n nodes at the top of the parse

stack, where n ----[/3[, will be the nodes corresponding to /3, with the rightmost child on top.

I
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Since the lthread attribute of the first n - I nodes at the top of the parse stack is set to their left

siblings, and the parse stack is finite in length, by following the lthread links, eventually a node X

must be found whose lthread attribute is _/, and the algorithm will successfully terminate.

4.2.1.2. Running time of Algorithm 4-1

When _/is the rightmost sibling, only the first three lines of the algorithm are executed, so

the running time of the above algorithm is 3, or O{cor_stant). Otherwise, the running time is

given by the sum of the counts shown to the right in Figure 4-1, which is 2R + 2, where

R _ I/3 [ - 1, B _/3 being the production for which )/represents a symbol contained in /3. This

is also O(eon_tant), being on average the mean of the lengths of the production rules represented

in the tree, which is independent of the number of nodes in the tree.

4.2.2. Retrieving the Leftmoat Son of a Node

Construction of an algorithm to retrieve the leftmost son of a node using some combination

of these four links is slightly more complicated, and unfortunately will not run on average in

O(constant) time, as the sibling function does. This algorithm will make the above tree traver-

sals easier to code, although its overall running time may not be very desirable, as we shall see.

This algorithm is presented in Figure 4-2.

4.2.2.1. DiJeuaaion of Algorithm 4-2

This algorithm works by following the chain of parent pointers back up from the rightmost

descendant of a node until the node's rightmost (immediate) child is reached, and then by follow-

ing the left thread links through the list of children until the leftmost child is reached. Each time

that the parser performs a reduction of nodes XI...X _ to a parent node _/, it makes the following

assignments (among others):
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Algorithm 4-2: Retrieve the Left Son of a Node

leftsonO/):

Input: A pointer to a parse tree node.

Output: A pointer to the left son of the node, or nil if none exists (_/is a termi-

nal node).

LetX be a local variable which is a pointer to a parse tree node.

X *- rdescend(A/);
if X = _/then

return(nil);

while parent(X) _ )4 do

X *-- parent(X);

while parent(lthread(X)) -- )4 do

X _-- lthread(X);

return(X).

1

1

0

/../

H-1

R

R-I

1

Figure 4-2: Given a parse tree whose nodes are linked together only by parent, lthread,
rmost, and rdescend links, retrieve the leftmost son of a node. The column to the right

counts the number of times each statement is executed, under the assumption that )4 is

not a terminal node. (If _/is a terminal, then the running time is 3, since only the first

three lines are executed.)
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parent(X_ *-- addr04), I < k < n; (1)

rdescend(J_) *- rdescend(Xn);

which extends the chain of parent links along the right edge of the tree by one level. The first

while loop can be shown correct by induction on the height h of the right side of the sub-tree

whose root is _/. For h ---- 0, _/is a terminal node, and its rdescend attribute points to itself. For

h ---- I, the rdescend attribute of a non-terminal node points to its rightmost child, which must

be a terminal node. Likewise, the parent attribute of the rightmost child terminal node points

back to this non-terminai node, since it is its immediate parent. For h ---- 8, ..., n, assuming the

rdesccnd attribute of )4 is the rightmost terminal node in the parse tree, and the parent attribute

of the rightmost child of _ points to _/, then for h ---- n -/- 1, the rdcscend attribute of )4 is identi-

cal to that of its rightmost child since it is copied from the rdesccnd attribute of its rightmost
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child, and the parent of the rightmost child of )4 is )4 itself, as given in code fragment (1) above.

Therefore, the rightmost descendant attribute of all rightmost non-terminals in the sub-tree

with root node }4 point to the rightmost terminal in the sub-tree, and )4 can always be reached

by following parent pointers beginning at rdescend(_). Since the first while loop in algorithm 4-2

follows parent pointers beginning at the rightmost descendant of )4, it will always arrive at a

node X whose parent attribute is set to )4, and this node will be the rightmost child of J/. There-

fore, at the conclusion of the first while loop, Xwill be set to the rightmost child of J/.

From the earlier discussion of algorithm 4-1, we know that if we start at the rightmost

child X of _/and follow the pointers stored in the lthread attribute, that we reach the children of

the production whose left hand side symbol is represented by the parent of this node, that we

reach these children in right-to-left order, and that the parent attribute of each of these children

is set to )4. Therefore, by looking one node deeper into the stack than X, that is, to node

lthrcad(X), if we find that the parent attribute of this node is not set to }4 then we know that X is

the first and leftmost son of )4. Thus the second while loop will always terminate with X set to

the left(most) son of )4, and Xis the value which is returned.

4.2.2.2. Running Time of Algorithm @-2

If }4 is a non-terminal node, the running time of le/tson is _H + _R ÷ I, where H is the

height of the right side of subtree J/, and R is the length of the right hand side of the production

rule whose left hand side non-terminal is )4. (If _/is a terminal node, then the running time is 3.)

Since R depends on the length of the production rule and not the number of nodes in the parse

tree, it is of O(constant). However, H depends on the height of the right side of the sub-tree of

\
which it is the root, which does depend upon the size of the tree.

The best case for hr occurs when the production with parent_,_has a rightmost child which

is a terminal node; in this case hr ---- 1, and the overall algorithm becomes O(constant). It is
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necessary to look at the grammar to determine the likelihood of this case, by noting the number

of productions which end in a terminal node, and their relative frequency in the language. 1

The worst case for H occurs when all productions in the sub-tree with root _/have length 1;

in this case H ---- n - 1, where n is the number of nodes in the tree, and H is O(n]. For languages

specified with non-ambiguous BNF grammars, the grammar will contain a number of renaming

rules, many in high frequency use, such as:.

<_expression_> _ <_term_ ==o _factor_ ==o _variable_> ==_ _identifier_.

We would like to discover what the average value is for a given grammar. Unfortunately,

in general this is a difficult question to answer. Empirical estimates can be made by analyzing

collections of programs written in the language, and computing the mean and standard deviation

of H and R. However, the choice of programs to include in the study must be carefully made, to

arrive at a representative sample.

If the grammar follows a regular pattern, it might lend itself to a more mathematical

analysis. Consider for example a grammar in which every production is of length 2. This gram-

mar produces binary parse trees (R _ _). The variable H measures the external path length

along the right edge of the parse tree. If we assume that the external path length along the right

edge of the parse tree is no different than the external path length from the root to any of the

terminal nodes, then we can take H to be proportional to the average external path length of

these trees. In this case, given a parse tree with n internal nodes, if we further assume sentences

will produce complete binary trees (trees with minimum height), we get an average path length

of log2n. If instead we assume that all possible tree constructions with n nodes are equally likely,

1For example, the C language grammar in use on the SAGA system contains 288 production rules, of
these, 100 have a terminal node as the rightmost child.

!
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we get an average path length of sqrt{n). 2 Unfortunately, grammars for real programming

languages are unlikely to produce trees which closely follow either form.

Since LR(1) parsers operate by recognizing production rule handles on the parse stack and

reducing them to single node parents, it seems reasonable to expect parse trees to take on an

overall shape more similar to a complete tree than to either a degenerate (linear) tree or many of

the structures possible given n nodes (although it is certainly possible to construct a grammar

with either of these properties). Since a complete tree seems overly optimistic, a value of logtn

for H is likely to be a good lower bound.

As the value of R increases, where R is based on a weighted (frequency) count of the lengths

of the production rules in a grammar, we can expect the average parse tree height H to decrease

for a given value of n, the number of nodes in the tree. We can hypothesize that H and R are in-

versely related to one another, and that a small value of R implies a tree with generally longer

external path lengths (an "overhead" factor of non-terminals, in a sense). Table 4-3 presents

some measurements of R, both as a simple average of the (unweighted) productions in several

grammars, as well as an average based on the frequency of productions found in a set of pro-

grams written in the language.

4.3. Providing leftson and right sibling Attributes.

The four attributes for parse tree linking are the minimum necessary to support the incre-

mental parser. The editor's incremental parser never needs to determine either the leftson or the

sibling of a node since the parse tree is built bottom up. However, the editor and other routines

which need to perform traversals of a completed parse tree will need to determine this informa-

tion. An implementor of the parsing algorithm must determine how often leftson and sibling

!

S[Knuth, 73], section 2.3.4.5 {p. 400).
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Language

Pascal

FP

Ads

C

Number

of

Production

Rules

217

105

432

288

Average
Production

Length R
Grammar

2.12

1.36

2.48

, 1.94

Average
Production

Length R

in Programs

1.49

1.46
1.41

1.14

Ratio of

Non-terminals

to
Terminals

1.76
2.16

2.24

7.04

Table 4-3: Average production rule lengths for several SAGA grammars and sets of programs

produced by those grammars.
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functions are likely to be used. The cost of adding each attribute is the space required to store

another link in a parse tree node, and the code to maintain it. The benefit for the leftson access

is that an operatio/i which previously took somewhere between O(logtn j and O(n) running time

will take unit time, or 0(I), since it is a simple lookup. The benefit for the sibling access is that

an operation which formerly took O(co_tant) time (a value of 6 time units for R ---- _) will also

take unit time (1 time unit).

Since much longer running times for the traversal programs would be required if the leftaon

and sibling functions are used, both a leftson and a (right) sibling attribute have been added to

the parse tree. Due to the similarity between the sibling attribute and the rmost attribute, the

rmost attribute has been removed, since it can be calculated by following a sequence of sibling

pointers. As we will see shortly, the incremental parsing algorithm only accesses the rmost attri-

bute during a late phase of the reparse, when it is reparsing a section of the tree previously en-

tered, and then only to avoid shifting nodes in a production which already have their lthread

fields properly set. By eliminating the rmost attribute, we now need to follow a pointer chain to

reach the rightmost sibling, but no other work needs to be done (the nodes do not need to have

the shift operation performed again by the parser, since their links are already correctly set). Be-

i
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cause the average production lengths are small, this pointer chain will be short, and little addi-

tional work is actually required.

4.4. Linking the Terminal Nodes Together

The editor maintains a text image display of the tree (hiding the internal structure), so it is

necessary to be able to efficiently access successive terminal nodes to retrieve the text representa-

tion of the token represented by each of these nodes. The initial version of the editor used inher-

ited attributes for the text formatting information and a preorder tree traversal to produce the

display, but this scheme had two difficulties. First, the input had to be successfully parsed in

order to meaningfully generate the display, and second, the computation time needed to traverse

the tree was excessive. By chaining the terminal nodes together into a doubly linked list, and

only processing this list in order to produce the display, better response was achieved; in addi-

tion, by storing newline and "spacing information in the terminal nodes, the user's format could

be preserved and the display produced whether or not the input could be successfully parsed. 3 (A

pretty printer could still be invoked at the conclusion of the parse to reformat the display, if

desired,)

Therefore, two additional attributes prey and nezt (discussed further in Chapter 5) were ad-

ded to the parse tree node. With these additional links, the parse tree structure will serve very

well to support the functionality required by the editor.

3A further improvement in response time was achieved by physically grouping terminal and non-
terminal nodes together in memory. This was accomplished by rewriting the node allocation routine to al-
locate both a block of non-terminal nodes and a block of terminal'nQdes (it still passed them back one at a

time, as new nodes were needed). The editor runs on an operating system with demand paged memory,
and its parse tree can also be demand paged within the editor's own data buffers (discussed in Chapter 6).
This grouping resulted in fewer page faults when a display was generated, and improved response on a

multi-user system since a smaller working set of memory pages was sufl_ent to support the editor.

l

I
I
I

l

I
l
I

l

I
I

I
I

I
l
I
I

l



II

II

il

B

i

I

!

I

II

I

!

i

II

II

I

!

i

II

39

4.5. Summary

In this chapter, we have taken a 10ok at the parse tree access required by an editor, investi-

gated some possible parse tree structures, and chosen a structure which is adequate to efficiently

support the editor. The net result is that the leftaon, prey and next attributes have been added,

and the rmost attribute replaced by the sibling attribute. In the next chapter, the incremental

reparsing algorithm is introduced and extended. More will be said about these modifications at

that point, when their impact upon the algorithm is discussed. All of the extensions which were

made to the algorithm can still be made independently of the changes made to the attributes of a

node, so another implementation could be based on the original parse tree structure together

with the leftson and sibling routines defined in this chapter. We now turn our attention to the in-

cremental LR parsing algorithm, discussed in Chapter 5.
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CHAPTER 5

THE INCREMENTAL PARSER

In this chapter, the editor's incremental parser is presented. This parser is based on, and

extended from, an incremental LR(0) parsing algorithm by Ghezzi and Mandrioli [Ghezzi and

Mandrioli, 80]. As published, the algorithm assumes the use of parser tables produced by an

LR(0) parser-generator. The input grammar is assumed to be an LR(0) context-free grammar

excluding productions with empty right hand sides.

To adapt the algorithm for use with the SAGA editor, a number of extensions were made.

Since many programming languages are based on LALR(1) grammars, the algorithm has been ex-

tended from LR(0) to LR(1) (also handling LALR(1) and SLR(1) grammars). It also has been ex-

tended to support grammars containing productions with empty right hand sides.

We have a new way to handle comments, which eliminates several problems: (1) Restric-

tion of use of comments to limited placement in the language, necessary for syntax-directed tem-

plate editors. (2) Storage and maintenance of comments in the parse tree. It is a difficult prob-

lem to store them in the tree and display them for the user while hiding them from the routines

which analyze the syntax of the tree. (3) Uniformity of access by editor commands to both com-

ments and syntactically meaningful tokens in the tree. Comments have been attached to other

tokens, not always displayed automatically, and have required additional commands specifically

designed to enable them to be edited. We have defined a _comment as a lexicai class, and

modified the parsing algorithm to recognize comments and handle them in an appropriate
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manner.

We have redefined the reduce operation, proposing an alternative which permits the parser

to treat non-terminal tokens in a uniform manner with terminal tokens. We also have combined

the parsing action and goto function into a single action. Both of these modifications eliminate

duplicate code in the incremental parser, improve its efficiency, and permit the editor to pass

sub-trees to the parser, as well as lists of terminal tokens.

Explicit error handling actions have been introduced, since a working editor must be able

to recover from a user's syntax errors. The original algorithm identifies syntax errors, but states

only "Jump to the appropriate error recovery action." While there are several approaches to be

taken and a decision to be made about whether to provide automatic error correction, the choice

of the best approach for use in an interactive, incrementally parsing editor is not obvious. We

have in fact tried a couple different approaches toward the handling of errors before settling upon

the current scheme, described below in section 5.9, as the most suitable.

We have altered the attributes associated with the parse tree node proposed in the original

statement of the incremental parser, since that structure is not suitable for use with an editor.

The alteration of one attribute and the introduction of some additional ones enables the editor's

command and display modules to work directly from the parse tree. This eliminates the need to

keep an additional text representation and the associated additional complexity that would be re-

quired to maintain the consistency between the textual and structural forms of the data.

A parse tree was chosen as the data structure, instead of an abstract syntax tree, since it

enables both the editor and the display manager to work directly with the tree. While abstract

trees require less space, systems which use them require an unparser to reconstruct the original

text image for display, and a second data structure to retain this text image for the editor. (In

the SAGA editor, a text image of the data actually displayed on the screen is kept by the window

!
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management package,but isused only to optimize updates to the display).With abstracttrees,

the formattingof the displayedtexttypicallyislimited,and insome casesno choiceispermitted

the user. But with a parse tree,the usercan format hisprogram any way he pleases,and thisin-

formation isretained.Pretty-prlntingprograms alsocan be used to reformat allor any part of

the treeinsome standardizedor customized format.

In thischapter,we describeand present the originalGhezzi and Mandrioli incremental

parser,and introducesome additionalvariableswhich willhelp in the subsequent descriptionof

our extensions.Then we review the extensionsthat we made in Chapter 4 to the parse tree

structure,discusstheirimpact upon the parsing algorithm, and present the modificationsre-

quired to support them. Remaining sectionsintroducethe extensionsto the algorithm required

to support the editorcapabilitiesmentioned above. Finally,we restatethe algorithm at the end

of the chapter,with allof the extensionsincorporatedintoit. In Chapter 6, we turn our atten-

tionto the editoritself,show how the incrementalparserisinterfacedto the editor,and discuss

the fundamental command capabilitieswhich provide support for both text and structurecom-

mands.

5.1. Description of the Algorithm

The original Ghezzi and MandrioU parsing algorithm is described in this section to give the

reader a feel for the operations that occur during incremental reparsing. The algorithm itself is

presented in the next section. Following sections then introduce the extensions that have been

made. The resulting algorithm, used by the SAGA editor, is presented at the end of this chapter,

summarizing the extensionsmade. "-

Given a grammar G = (N, _, P, S), a terminal string w _- zzy E L(G), with z, z, y E Z*,

and a parse tree "/'for w, we wish to substitute the string of tokens z' E _* for z in T, incremen-
t
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tally reconstructing the parse tree T' for the new string w' ----zz'y. (Note that any of z, y, z, and

z' may be empty, in which case we may have only an insertion or deletion, or an initial parse.)

To aid in the description of the algorithm, several variables not present in the original algorithm

are introduced. We introduce variables activenode, deletecount, neztusernode and neztnode. Ac-

tivenode points to the terminal node at which an editing cursor is positioned; all deletions will be-

gin with this node, and all insertions will occur just before it. Thus activenode is positioned on

the node representing the first token in zy. Activenode is passed to the parser together with

deletecount, which is assigned the number of nodes to be deleted (the length of z). Neztusernode

is set to the first symbol in the input string z' to be read by the parser, or nil if z' is empty.

Neztnode is set to the node corresponding to the first token in y. This variable is initially as-

signed a pointer to the node deletecount nodes past activenode. As the parser reads the nodes

corresponding to the tokens in y, this variable will be advanced, so it always marks the next node

to be read.

Variable stacktop, corresponding to top in the original algorithm, is set to the node on the

top of the parse stack, and irmark, corresponding to mark, to the node on the parse stack just to

the left of the first node included in the new sub-tree being constructed by the parser. The it-

mark variable will be used later to terminate the reparse; it will be discussed at that time.

5.1.1. Initialization

Let_/be the node at which the editing cursor is positioned (and at which activenode is set).

To perform the initialization, we must restore the state of the parser to that which existed just

before the first token of zy was shifted during the previous parse. Since each and every state

through which the parser has passed during the previous parse of Tis stored in the lthread and

pstate attributes associated with the nodes in T, the parse stack can be restored simply by setting

stacktop to the value of lthread()¢). The state of the parser is given by the value of

!
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pstate(staektop}. The reader should be convinced that the view of all of the sub-trees available

from the stacktop variable is identical to the view that the parser would have obtained had it ac-

tually restarted the parse from the beginning of w and proceeded up to this point.

The first time that the parser runs, there is no initial tree; in this case, stacktop is set to a

bottom-of-stack node _, a special parse node whose pstate attribute is set to the initial state of

the parser. This node serves as a pad token at the bottom of the parse stack, and can only be

reached through the lthread links in the tree.

In addition, the variable irmark is set to the value of stacktop, since this node is part of the

old tree, and the next node to be shifted will be a part of the new tree being constructed. Final-

ly, the input characters are lexically analyzed by a tokenizing routine, which constructs a linked

list of terminal nodes corresponding to the tokens in z', and assigns the first node on this list to

nextusernode.

5.1.2. Deletion of z

If z is non-empty, it indicates a group of tokens to be deleted. The deletion of z is accom-

plished by advancing the editing cursor by the number of terminal tokens to be deleted, and set-

ting the neztnode variable to the new node to which the editing cursor now points; this node

corresponds to the first token of y. Since the terminal nodes in the parse tree corresponding to z

lie between the points marked by stacktop and neztnode, they will be excluded from the new

parse tree that will be constructed during this reparse; no further action is required3

tit is desirable to place these nodes onto a list of deleted nodes, or onto a "last nodes deleted" list, to
support a capability for an undo operation. Of course, a garbage collector also could be provided to
periodically sweep through memory and reclaim those nodes no longer reachable from the root of the parse
tree.
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5.1.3. Insertion of z'

If z' is empty, there is no new input, and we immediately skip to the reparsing of y, dis-

cussed in the following section. Otherwise, neztusernode points to the list of terminal nodes

corresponding to the tokens in z' to be inserted, and we proceed as follows. The parsing action f

is determined using the current parse state patate(stacktop). If it is shift, then the node pointed

to by neztusernode is pushed onto the parse stack, and neztasernode is advanced to the next node

in the list.

If /is reduce, then a new node is allocated to be the parent of the nodes on the top of the

stack which correspond to the right hand side of the production rule; these nodes are popped

from the stack. The parse state stored in the node which becomes the top of stack is used to

determine the goto function g. The parent node is pushed onto the stack, and assigned this state,

which becomes the new state of the parser. 2

If the string y in the old tree is empty, or the parser reaches its end, then it is also possible

for the parsing action /to be accept, in which case the parent node corresponds to the start sym-

bol of the grammar, the indicated reduction is performed, the parser is placed into its final state,

and terminates.

If the next input token is invalid in the current parser context, then the parse action is er-

ror, and the parse is suspended at this point. Discussion of error handling is deferred until later

in the chapter.

Assuming that w' ---- zz'y is a legal sentence in the language, eventually the parser will shift

the last token in z', perform zero or more reductions, and then be ready to shift the first token in

2The alternate reduction mentioned earlier in Chapter 3, in which the new parent is prepended to the
input stream, will be added as an extension to this algorithm later in this chapter.

!
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y. At this point in the parse, the parsing of z' is complete, and we begin the reparse of y.

5.1.4. Reparse of y

While re-scanning y, the parser handles each of the possible parse actions as above, except

that it makes some additional checks in an attempt to optimize the reparse, which will save a

considerable amount of work. Each time that the parser shifts a node )4 corresponding to either

a token in y or the parent of a token in y, it compares the new parse state g()4) against the parse

state pstate(._) the previous time that )4 was shifted. Since we are re-scanning y, which by defin-

ition did not change, if the comparison between these parse states shows the states to be equal,

then we are guaranteed that if the parser continues reparsing the subtrees of this node's siblings,

that the exact same result will be achieved as before. Therefore, the parser can skip these steps

of the analysis, and directly reset its stacktop variable to be the rightmost sibling of )4 (note that

the lthread attribute of the right siblings of )4 are all already correctly set, so that this reassign-

ment causes them to appear on the parse stack just as though each had been individually shifted

again).

The parser's next action must be to perform a reduction. Let )4 now be set to the parent of

the node on the top of the stack. If the parent attribute of each of the children to be included in

the reduction is set to point to )4, then this node can also be reused. The parser only needs to

reset the stacktop variable to be this node (the lthread, rmost, and parent links of all of its chil-

dren are already correctly set), and set the lthread attribute of )4 to the node which is on the top

of the stack once the nodes corresponding to the right hand side of this production rule have been

popped from the stack.

The parser then repeats this shift/reduce process, comparing the new parse state to the one

stored, and continuing to skip steps in the analysis, until it reaches a reduction in which all of the
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childrendo not have theirparentattributesetto )4.

At thispoint,the match conditioncan be tested,sincesome of childrencorrespond to ele-

ments of,or parents of elements of z and/or z'. Ifa match isindicated,then the incremental

reparse willterminate with thisreduction,and our new tree7"'willbe complete. Ifnot,a new

non-terminal node willbe allocated,thereductionperformed, and nextusernodesetto the token

followingthe rightmost descendant of thisnew sub-tree. When the node to which nextusernode

now pointsis shifted,the above parse statecomparison can be performed, and the above pro-

cedure repeated,untileitherthe match conditiondoes testtrue,or a reductionis made to the

startsymbol of the grammar, and the parseracceptsthe string.

5.1.5. Testing the Match Condition

Whenever the parser is ready to make a reduction while reparsing y, it checks a set of

matching conditions to determine whether the parent of the node on the top of the stack can be

reused in the reduction that is about to be performed, and whether the left and right edges of the

resulting sub-tree mesh cleanly into the structure of the old tree. If these requirements are

satisfied, then we are guaranteed that if we do continue the parse beyond this point, all subse-

quent actions of the parser would be identical to those that were taken when the remainder of the

parse tree was last constructed. Therefore, we can terminate the parse at this point, having in-

crementally produced the treeT' corresponding to the sentence w _ xz'y.

Let A _ (._ be the reduction that is about to be performed, let stacktop be set to the node

corresponding to the rightmost token in o', and let _/be the parent of this node, or nil if none yet

exists (the sub-tree is new). Also, let o _ alat...a, where n _ Iol and )/k is the node

corresponding to ak, for i < k < n. Whether the matching condition holds at a given point in the

parse tree can be determined by performing the following five tests prior to carrying out the

I
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reduction:

(ml))/_ nil and token{)/} = A;

(m2) irmark -_ )/k' for some k;

(m3) parent()/._ ---- )/for I < i < k;

(m4) parent(lthread()/1}} _ )/;

(m5) rdescend()/n} --_ rdescend()/}. I
I

Condition (ml) checks whether the token that labels the parent node )4 in the original tree

Tis the same as the token A on the left hand side of the production rule about to be used. Clear-

ly, if )/= nil, or if these non-terminal tokens do not match, then the new sub-tree about to be

produced cannot reuse the node )/, and the match condition cannot be satisfied.

Condition (m2) checks that irmark points to a node )/re 1 < k < n, which is to be included

in the reduction. Recall that irmark is always set to the node closest to the top of the stack

which existed in the original tree T, and has not yet been included in a new reduction. If irmark

= )/t, then we know that )4k existed in the original tree T, and that the newly created nodes

which are descendants of the Nf 1 _< j _ n mesh correctly into the preexisting nodes in Tto their

left. It only remains to be shown that the parent node )4 can be cleanly grafted into T, and that

the right edge of this new sub-tree fits into that portion of Tto its right.

Nodes )11 "'" )/_ existed originally in T. Condition (m3) checks that the parent of each of

these nodes is )/. The sub-trees with parent )/i for j _ k are either newly rebuilt or just reparsed

I
I

I

I
l

by the parser so they either have no parent yet, or their parent reference is not relevant since it

is not necessarily based on the original tree T.

Condition (m4) checks that node )41, which is about to become the leftmost son of )/was

previously the leftmost son of )/. (The node on the parse stack beneath )/I must have a different

parent than )/.) If )11 previously was a son of _/, but not its leftmost son, then we will not be
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SAGA Ghezzi &
Notation Mandrloli Description

Variables

B

T

actlvenode

irmark

oldtable

Blacktop
deleteeount

nextusernode

neztnode

addr(_)
lthread(q)

parent(qJ

pstate(q)

rdeecend(q)
rmoet(q)

token(q)

leflaon(q)

nezt(q)

pree(q)

8iblinf(q)

aUo¢O
apply_match 0

I()
gO

matchcond(}

reduce(i, q)

B
q
T

first- v
mark

old-table

top

r(_
p(A_
F(_
t(_)

rd(_
rb(_
v(_)

takeO
apply-matching 0

f

g
matching-condition 0

apply-reduction(i, 31)

apptv-_hift(q)
apply-shift(q)

Node at bottom of parse stack of T
Node of T

Threaded parse tree

First node in y

Incremental reparse marker
Temporary table value

Top node of the stack
Number of tokens to be deleted

Next node in z'to be read

Next node in y to be read

Attributes of nodes

Address of q

Next in pushdown list after q

Father of q

LR table of q (parse state)
Rightmost descendant of q

Rightmost brother of q
Element of V in q
Leftmost son of non-terminal q

Next terminal in tree after q

Previous terminal before q

Next sibling to right of q

Functions

Allocate a new node

Graft new tree into old

Current parsing action

Current goto function

Can new tree be grafted
into old tree at current spot?

Reduce by production i, making

q the parent node.
Shift q onto stack

Shift q onto stack, go to parse

stack(q, i)

action(...)
chain(q, ...)

neztsym 0

unchain(q)

pJ(_

state i (replaces shift above)

p_(q) = q
p .(q)= lthread(q)
pj(_ ffi p1(pj-l(_)

Combined f and g functions

Link q into nezt, prey list

Next node to be read by parser.

Unlink q from nezt, prey list

Table 5-1: Notation used in the description

of the LR(0) incremental reparsing algorithm.
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able to terminate the parse at )4 since it would leave the original leftson of )4 as a dangling node

within the tree, which would no longer be well-structured.

Lastly, condition (m5) checks that the rightmost descendant of )44 matches the rightmost

descendant of the parent node )4, to guarantee that the newly created sub-tree which is re-using

pre-existing parent node )4 has the same right edge as the sub-tree rooted in )4. If these nodes

do not match, then we cannot terminate the parse at )4, since some nodes will be left dangling

where the right edge of the new-subtree meets the old tree, and the tree will not be well-

structured.

If conditions (ml) through (m5) are all true, then )4 is re-used with new children 3/1 ... )4.

This newly created sub-tree is unified with that part of the original tree Twhich remains to pro-

duce T', and the parser terminates, accepting the new input.

5.2. Algorithm 5.1: The Ghezzi and Mandrioli Incremental LR(0) Parser

Having described the algorithm, we now include the actual algorithm in this section. This

is Ghezzi and Mandrioli's LR(0) algorithm as published, but described using different terms.

Table 5-1 gives the correspondence between the terms used here and those in the originally pub-

lished paper. The different notation is used in part to provide longer, more mnemonic names for

the attributes of the parse tree nodes, and to permit the algorithm to be described in terms that

match the code used in the actual implementation. Curly braces are introduced for grouping, to

make the algorithm more readable.

5.2.1. Routines used in the Parser

allocO:

*-- alloc();

a_dr()4),---)4;
rdescend(N) ,-- )4;

return()4).
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apply_match:

Let A --* o be the reduction :[or which the matching condition holds.

parent(stack(stacktop, j)) _ parent(irmark), VO < j < [o' [;

rmost(stack(stacktop, j) _ stacktop, V O _ j < l,:_.

matchcondO:
Let A --* a be the reduction to be applied.

if irmark = stack(stacktop, j), for some 0 _< j < l o: I

and parent(irmark) "- parent(stack(irmark, h)) VO < h < In' I- j
and parent(irmark) _ parent(stack(irmark, I(-_]- 3))--

I and token(parent(irmark)) = Aand rdescend(stacktop) = rdescend(parent(irmark))

I

I
I
I

I

I
I

I
I

I
I
I

then

else

reduce(i, J¢):

matchcond _ true;

matchcond +-- false.

Let i be production A --* o,.

parent(stack(stacktop, j)) _-- addr(J¢), V0 < j < Io _[;

rmost(stack(stacktop, j)) +-- stacktop, VO __ j_ I(_ I;

token(H) _ A;
let g be the goto function of pstate(stack(stacktop, Is I));

pstate(_/) _-- g(A);

rdescend(.A/) _ rdescend(stacktop);

stacktoD *-- addr(.A/).

shift()¢):

Let g be the goto function of pstate(stacktop).

Ithread(.A/) _ stacktop;

pstate(._) *-- g(token(_));
stacktop _-. addr(.A/).

5.2.2. The Parser

Let Tbe the parse tree for the string m : zzy.

Let z'be a replacement string for z, and w' ----zz'y the result.

1. Initialisation

(1.1) if w _ e (the empty string), then I

let _/be the node in Twhich stores the first symbol of zy;

irmark 4.- lthread(J¢);

stacktop _ lthread(_/);

}.

I
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(1.2) if to ---- e (i.e., to' is being parsed from scratch) then {

irrnark _--- _;

stacktop _ B;

}.

2. Analysis of z'

(2.1) Let fbe the parsing action of pstate(stacktop).

Execute (a), (b), (c), or (d) according to the value of f.

(a) f= SHIFT.
if the symbol to be shifted is first(y) then

jump to (3);

else {

)/+- allocO;

narne()/) *-- nezt-symbol-from-the-input;,

shif_ J_;

(b) f ----REDUCE i. Let i be the production A ---, o,.
if irmark= stack()/,i) forsome0 <= i < I_ I(i.e.,irmarkmust be updated)
then

7/,-- auocO;
r_duce(i,)/).

(c) f---- ERROR.
Jump to the appropriate error recovery action.

(d) f---- ACCEPT.
The algorithm terminates, accepting the string so far scanned.

3. Analysis of y

(3.1) Let )/be the node which stores the first symbol of y.

oldtable _ pstate()/);

shift()/);

(3.2) if oldtable _ pstate(stacktop) then
jump to 3.3;

Otherwise, skip steps of the analysis of y as follows:

stacktop _ rmost(stacktop) (we enter directly in a reduction state).

Let f be the parsing action of pstate(stacktop), where f ---- REDUCE i, i being

production A --* o_.

if matchcond holds then {

apply_match; / .
accept to', terminating the algorithm.

}
if irmark = stack(stacktop, j) for some 0 _= j _ ]a ]then

irrnark *--- stack(stacktop, ]_ [); $
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(3.3)

(a)

(b)

(c)

(d)

oldtable _ pstate(parent(stacktop));
if parent(stack(stacktop, j)) = parent(stack(stacktop, k)) V 0 _= j, k _ [c_ [then

the entire subtree of Trooted in parent(stacktop) is reused:
.V _-- parent(stacktop);
lthread(A[) _-- stack(stacktop, I_ I).

Let g be the goto function of pstate(stack(staektop, Ic_I)).

pstate(.V) _-- g(A).

} else {
a new node is allocated:

_/ _ aUoc();

reduce(i, _);
}
Jump to 3.2.

Let f be the parsing action of pstate(stacktop).

Execute (a), (b), (c), or (d) according to the value of f.

f = SHIFT. Let X/ be the node corresponding to the next symbol of y.

oldtable *-- pstate(_);

,hiyt(n);
jump to 3.2.

f = RED UCE i. Let i be production A --* _';

if matchcond holds then {
app ly_match;
accevt w'. terminatin_ the al[orithm.

}
if irmarlc ----stack(stacktop, j) for some 0 _'---- j _ [a [then

irmark +-- stack(stacktop, [a D;

)4 _ alloc();

redece(i_ )4);
jump to 3.3.

f ----ERR OR.

Jump to the appropriate error recovery action.

f = A CCEPT.

The algorithm terminates.

5.3. Modifications to the Parse Tree Node

In the previouschapter,we decidedthat parse treeaccessforothersoftware toolswould be

improved by modifying some of the attributesof a parsetreenode. In addition,parse treeaccess

forthe editorisimproved ifsome additionalattributesare alsoadded to each parse treenode. In
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this section we discuss these alterations.

5.3.1. Addition of a leflson Attribute

A leflson attribute has been added to each non-terminal parse tree node, so that each non-

terminal node now contains a pointer to its leftmost child. The le.ftson attribute is not required

by the incremental parser, so the addition of one has no effect on the operation of the algorithm

since this attribute is never referenced by it. The existence of this attribute requires only one ad-

ditional assignment in the reduce() routine of the algorithm, to set the Ithread attribute of the

parent node to its leftmost child at the time that the reduction is being performed. This is ac-

complished by including the following statement in this routine just after the token attribute is

set:

lthread(_) _ stack(stacktop, [o' I- 1);

This assignment is the only one necessary since the only time the relationship between a parent

and its children changes is during a reduction. All reductions occur in the reduce routine, with

one exception, in apply_match, when the parent node is re-used in performing the final reduction

which terminates the reparse. In this situation, for the match condition to test true, the irmark

variable must point to one of the nodes within this production. This can only occur if the node

existed in the original tree, so the value of the leflson attribute will already be correctly set, and

no further action is necessary.

5.3.2. Replacement of rmost by the sibling Attribute

The rmost attribute has been replaced by the sibling attribute. The rmost attribute con-

tained a pointer to the rightmost brother of a node in a production; the new sibling attribute con-

tains a pointer to the sibling to the immediate right of each node, or nil if the node is itself a

rightmost sibling. The replacement of the rmost attribute by the sibling attribute does slightly
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affect the parsing algorithm in that wherever the rmost attribute had been referenced, it is now

necessary to traverse the sibling links to reach the rightmost brother of that node. This occurs in

only one location, in section (3.2) of the algorithm, in the reparse optimization section. The

reference to rmost is made in order to obtain the rightmost sibling of a production which the

parser has decided need not be reparsed since it would have an identical outcome. The produc-

tion is entered onto the parse stack simply by setting stacktop to the value of this attribute. The

same result is obtained using the sibling attribute, if the original statement in section (3.2):

stacktop 4-. rmost(stacktop)

is replaced by:

while sibling(stacktop) _ nil do

stacktop *-- sibling(stacktop);

While it may appear that the replacement of a simple assignment statement by a loop may slow

the algorithm, our analysis at the end of chapter 4 showed that the average production rule

length R in sample parse trees tends to be approximately _ or less, depending on the grammar, so

that the additional work required is indeed small.

To maintain the rmost attribute, assignment statements were required in both

apply_.match 0 and reduce(), where the rmost attribute previously was set. The assignment state-

ment:

rmost(stack(stacktop, j)) _-- stacktop, VO _ j < Io I

is replaced in each instance by:

sibling(stack(stacktop, j)) *--- stack(stacktop, j- 1), V0 _ j < [¢r [;

sibling(stacktop) 4--- nil.

The same number of assignments to the sibling attribute of these nodes is required as before; only

the value of the assignment is different, since each node now receives the address of the sibling to

its immediate right, instead of the rightmost sibling. It should be clear that by following this list
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of pointers, stacktop will always be set to the rightmost sibling at the conclusion of this loop.

5.3.3. Chaining the Terminal Nodes Together

Two other attributes have been added to the parse tree node: the nezt and prey attributes.

These are used to chain the terminal leaves of the parse tree together into a doubly-linked list.

While these attributes are not necessary for the parsing algorithm, they are of great utility to the

editor in producing the display and executing user commands. Since the parse tree is constructed

and maintained by the incremental parsing algorithm, the maintenance of these additional attri-

butes is best done by the algorithm. We add two new routines, chain and unchain, which add

and remove nodes from this doubly-linked list:

chain(q, at, M):
Let M be a node in the frontier of T, N a node to be added,

and at be one of BEFORE or AFTER.

if at = BEFORE then {

next(_l) = addr(M };

prev(.K} = prey(M);

if prey(M) # nil then

n,xt(pre.(M))= addr(U);
preqM ) = add,(.q);

}
ifat= AFTER then {

o

next(it} -_ next(M};

prev(.A[} = addr(M );

if next(M) # nil then

p,eq.ext(M)) = add,(n)',
next(M} -- addr(n);

I
I

I

I
I
I

I
I

I

The chain routineonly needs to be calledfrom one locationin the parser,at the point that a

node correspondingto a token in z'isshiftedby the parser. Sincethe nodes correspondingto the

tokens in both z and y previously existed in T, their next and prey attributes are already correctly

I
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unchain(N}: i
p,,qn.xt(n)) = p,.q#);
next(prevO¢)) = next(N}.
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set. The unchain command only needs to be called during parser re-initialization to remove each

of the terminal nodes associated with the tokens of z which are being deleted. Other calls will be

needed for error handling, but these calls will be discussed later, when this topic is presented.

5.4. Extension of the Algorithm to LR(1)

Since programming languages of interestare easilyexpressibleusing LR(1) grammars, the

algorithm isextended to includethisclassof context-freegrammars. Almost allof the added

complexity caused by thisextensionaffectsthe parser-generatorprogram itself,sincedifferental-

gorithms need to be used to produce theparse tables.But once produced, the differencefor the

incrementalparsing algorithm isthat theparsingactionbecomes a product of both the stateof

the parserand the nextsymbol from theinput. Sincethese'parsetablegenerationalgorithms are

well understood,and parser-generatorsfor thisclassof grammars have been written and are

commonly available,they willnot be coveredhere.

To implement thisextensionin theparsingalgorithm,We extend both fand g so that they

depend upon both of these parameters. We introduce a function,neztaym, which returns the

node corresponding to the next input token and advances neztusernode. If there are no new input

nodes left, then the node in y to which aeztnode points is returned, and neztnode is advanced. If

nextnode is nil, then a node corresponding to the end-of-file token is generated and returned.

The only time this occurs is during the very first parse of a new file; in all other invocations of

the parser, the last node in the list headed by neztnode will be the end-of-file token, which the

parser will never go past. If the end-of-file token is legal, then the parser will receive an accept

action before a new node is needed; if not, then an unexpected end-of-file error will occur, and

the parser will suspend at this point. Thus, neztsym is defined as:

I



58

nextsymC):

Let )4 be a pointer to a parse tree node.

if nextusernode _ nil then {

)4 _-- neztusernode;
neztusernode _ nezt(neztusernode);

} e]Je if neztnode _ nil then .{
*- neztnode;

nextnode *--- next(neztnode);

else {
N *-" allocO;

token()4) *-- eof; (the end:of-file token code)

}

return()4).

This extension requires a change to the algorithm, as follows; wherever

Let f be the parsing action of pstate(staektop)

appears, it is replaced by:

Let fbe the parsing action of pstateCstacktop ) and nextsym O.

Wherever

Let 9 be the goto function of pstate(...)

appears, it is replaced by:

Let 9 be the 9oto function of pstate(...) and neztsym O.

Modifications to the incremental parsing algorithm occur in part (2.1), the end of part (3.2), part

(3.3) and in the routines shift and reduce.

The major change to the parser occurs in the initialization section, since it is no longer

sufficient to initialize stacktop the stack pointer contained in activenode. Because of the looka-

head requirement, it may now happen that the parse action previously taken on the node preced-

ing activenode will differ from the action that will be taken during this parse, since activenode

will not necessarily be the lookahead token this time; the first token in z' will be instead. There-

fore, the parser must back up one token (since the grammar is LR(1)) and then reset the parser

variables using this node instead. Section (1.1) must be altered to reset A/to preyS)4} before any
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of the assignments are made. Thus, section (1.1) becomes:

(1.1) ifw _ e (theempty string),then {

let A/be the node in Twhich storesthe firstsymbol of zy;

irmark _ lthreadO_);

stacktop _ lthread(_/);

.

5.5. Redefinition of the reduce Operation

To permit the editor to pass non-terminal nodes to the parser in the neztusernode list

(corresponding to tokens in z_, and to permit the f and g functions to be combined (covered in

the next section), the reduce action is redefined to prepend the parent node onto the input instead

of placing it on the top of the parse stack. Routines neztsym, reduce and shift need to be

modified, and a new routine, prepend, added to place the new parent node at the head of the in-

put list.

Since the parent node which is to be prepended to the input list will immediately be shifted

during the next step of the parser, it is sufficient to define a new variable savenode to retain this

node, and add an initial test to the neztsym routine to return the node assigned to savenode if it

is non-n//, setting savenode to nil when this is done. The new routine prepend is defined as fol-

lows:

prepend(_):
savenode _-- _/.

The new test, placed at the beginning of neztsym, is

if savenode _ nil then {

_/ _-- savenode;

savenode _ nil;

} else ...

I
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Several lines of code at the end of the reduce routine, which place _/onto the parse stack,

are deleted. These lines are:

let g be the goto function of pstate(stack(stacktop, Ic_ I));

pstate(J¢) _ g(A);

stacktop _ addr(3¢}.

This modification simplifies the parsing algorithm, since redundant code for shifting nodes

is removed from reduce.

5.8. Combining the f and g Parsing Functions

At each step in an incremental reparse, the parser first determines the parsing action f and

then a short time later the goto function g. We have redefined the reduction action as a reduc-

tion by a given production rule number, with the resulting parent node prepended to the input

rather than immediately placed on top of the parse stack. With this redefinition, g now depends

upon the current parse state and the head of the input just as f has always done. The goto func-

tion in a reduction, which previously depended upon the parse state uncovered in the parse stack

has become the goto function of a shift action of a non-terminal symbol.

This uniformity permits us to combine the f and g functions into a single action routine.

This is a desirable alteration, since parse tables usually code both the action and new state or

rule number together in a single entry. By retrieving both with a single call, we eliminate a du-

plicate lookup that would otherwise have to occur at each step in the parse.

The action routine takes as arguments the current parse state and input symbol, as f and g

did before, and returns two values. In the case of a shift or accept action, these new values

correspond to the old values returned by f and g, namely the action and the new parse state. In

the case of a reduce action, the second value is assigned the production rule number by which the

reduction is to be made. In other cases, this second value is unused.
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This change is incorporated into the incremental parsing algorithm by modifying sections

(2.1), (3.2) and (3.3). The introductory line:

Let fbe the parsing action of pstate(stacktop)and neztsym 0

is replaced by an explicit call to the action routine:

action(pstatc(stacktopf, neztsyra(), f, newvalue_

where /now becomes a variable assigned by action, and the variable in the position of newvalue

above is assigned either the new parse state or a production rule number, according to the value

of/.

The shift routine must also be modified to pass in the new parse state, now contained in

newsalue, since it is no longer necessary to call g from within it. The call to g is replaced by the

value of this variable. No further modifications are necessary, and it should be evident that the

algorithm still runs as before since its flow is still the same; only the form in which this informa-

tion is passed has changed. The significance of this change is that the efficiency of the algorithm

is improved, and we gain the ability to pass an intact sub-tree to the parser.

5.7. Extension to Support Grammars with epsilon Productions

The parsing theory for LR(1) context-free grammars is well developed, and epsilon produc-

tions (productions with empty right hand sides) are well understood. While any grammar con-

taining epsUon productions can be represented by an equivalent grammar with none [Hopcroft

and Ullman, 69], it is much more convenient for the language implementor to be able to use epsi-

Ion rules in his specification.

The addition of epsilon rules adds some complexity to the algorithm. First, their represen-

tation in the tree must be decided. Two approaches are common: the first places nil pointers into

the parents of epsilon productions; the second represents the empty right hand side with an epsi-
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Ion terminal node, and adds a token code to the terminal vocabulary of the grammar. The

second method has been chosen for the SAGA editor,since itresultsin a more uniform parse

tree. All non-terminal nodes always have at leastone child,and when descending through the

treetoward thefrontier,one isguaranteed to eventuallyreach a terminal node.

The initializationof the algorithm is affected,since it is no longer sufficientto use

prcv(activenode)to initializethe parser. Any sectionof the frontiercan containan unlimited se-

quence of epsilonnodes,depending on the form of the grammar in use. Therefore,itisnecessary

to check the token type of the precedingnode and ifitisan epsilontoken,to continue traversal

back along the prey links. Since the stack isfinite,eithera non-epsilonterminal token,or the

bottom-of-stacknode B willeventuallybe reached. This node then can be used to initializethe

parser. In theinitializationofthe parser,part (1.1)isreplacedby the followingcode:

(I.I) ifw_,then{
let )4 be the node in Twhich stores the first symbol of zy;

)1 _" prey()1);

while token(V) -_- _ do

)4 ,-- prey()4);

irmark _-- lthread()1);

stacktop _ lthread()4);

Part (2.1)(b)isaffected,sincein the production A --,c_,o_can now be of length zero. In

thiscase,we shiftan epsilonterminalnode onto the stack,and then perform a reduction,using a

length of 1 for the rule instead of 0. Replace ")4 _-- allocO; reduce(i, )4)" in (2.1)(b) with:

(2.1)(b)

if l(a' I > 0 then {

)1 _.. allocO;

reduce(i, _0;

} dee {

)1 _-- aUocO;

token()4) _ _;

shift()1, -1);
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J_ _.- allocO;

reduce(i, _/);

The shift routine is passed an unused parse state code, in this case -1, for assignment to the

pstate field, since the upsilon token has no got. function. The reduce routine must be modified to

check whether I_ I = O, and if so to assume that I_, I= 2 instead, since an epsilon node now re-

sides on the stack. The matchcond routine needs an identical check, although the test will always

fail when called with the parent of an upsilon node, since a production must have length _ 1 in

order to pass all of the tests.

A modification to neztsym is also required, to test for an upsilon token and delete it from

the list. A while loop suffices, which will continue testing tokens until one is found which is not

an epsUon token. Because the editor produces an initial parse tree during initialization on a new

file, the last token in the nextnode list will always be the end-of-file token, so this loop will al-

ways succeed in locating a non-upsilon token.

In neztsym, the following code fragment:

t else if neztnode _ nil then {J

._ _ neztnode;

neztnode _-- nezt(neztnode);

} else {

is replaced by:

} else if neztnode _ nil then {

while nodetype(neztnode) ---- _ do

ncztnode _ next(neztnode);

*-- neztnode;

ncxtnode _ next(neztnode);

} e_e {

I
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Itshouldbe evidentthat any epsilontokens existingin the originaltree,afterthe point of

the modification,which are reached by the parserwillbe removed, and that the parser willre-

ceivethe correctlookahead token. Ifthe epsilontokens should be retained in the new tree,the

parser will produce new nodes as necessary,when directedby the action routine to perform

reductionsinwhich the lengthof the righthand sideof the production ruleiszero.

No othermodificationsare needed to support epsUon rules.We now turn our attentionto

comment tokensand theirhandling.

5.8. Extension to Support Comments

Providing support for comments is one of the more challenging tasks for language-based

editors. Programming languages which include comments typically permit them to appear

between any two tokens in the input; some, such as the C programming language [Kernighan and

Ritchie, 78], also permit them even within tokens, between any two characters. This flexibility is

easy for a batch compiler to support, since all comments are stripped out of the input and dis-

carded as soon as they are read, and do not affect further processing of the input data. But

language-based editors do not have this option, since they are expected to retain and display a

user's comments along with his program text. Unfortunately, while a lexical class for comments

is easily definable, incorporating a comment token into the production rules of a grammar is usu-

ally not possible; if all of the permissible locations for comments in the language are specified in

the grammar, it becomes ambiguous and cannot be successfully processed by a parser-generating

system. An alternate method of handling comments needs to be used.

Some syntax-directed editors solve this problem by restricting the locations at which com-

ments can appear so that comment tokens can be specified in the formal description of the

language [Teitelhaum and Reps, 81]. Comments are required in certain locations, such as preced-
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ing procedure declarations, permitted in others, and prohibited in most remaining ones. Restric-

tions such as these are often justified by the implementors by stating that they are producing a

structured environment, that the use of comments is to be encouraged, and that by limiting them

to a few key locations, they are encouraging a more standardized development style.

Other editors [Horton, 81] construct comment tokens and attach them to a nearby terminal

token in the parse tree. This has the advantage of hiding the comment from the parser, but the

disadvantage of forcing the comment to be treated as an attribute of a neighboring node, when

no such relationship necessarily exists. There is also the added problem of deciding whether to

attach the comment to the preceding or following parse tree node. This is often solved either by

picking one by default and letting the user override the choice, or prompting the user for the

node to use each time he enters a comment. This choice is not simple: a comment documenting

a routine is usually placed before the routine in the file, immediately preceding the first token in

the routine, while a comment documenting a variable declaration is usually placed after the de-

claration (and any trailing punctuation that may be present). Trying to determine the node to

which the comment should be attached based on the surrounding context can be attempted if

language-dependent information is used, but suffers the difficulty of not knowing where to place

the comment when a syntax erroroccurs.

The SAGA editorusesa third,and new, approach. Comments are tokenizedby the lexical

analyzer and allocatedtheirown terminalnode, one per comment. These nodes are attached to

the parse treealong the prev/nextdoubly-linkedlistof terminal nodes in the parser. Each time

a comment token isdetectedin the input,itislinkedintothislist,and the followingtoken isre-

trievedfrom the input to be passed to the actionroutine,so that itnever encountersa comment

token,and the parse tablesdo not need entriesforcomments. Sincethe prev//neztlistisnot used

by the algorithm, once the comment tokens are in the tree,they are never seen again by the

!
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parser. Even walking the tree in the traditional way from the root will not discover any com-

ment tokens in the tree, so that the routines which only are concerned only with syntactic struc-

ture need not be modified to process comments, even though comments can in fact occur between

any two tokens in the parse tree. In subsequent editing, the comment will be included in the

operation being performed if it is selected by the user, and not otherwise. Routines which need

to process comments while walking the tree can do so by checking the next attribute of each ter-

minal node they encounter, and testing the token attribute of this node.

Many programming languages permit single comments to span more than one line. While

the comment text could be stored in one long string and a single node allocated for the entire

comment, this representation is not convenient for the routines which must track the position of

the editing cursor as it moves past such comments. Therefore, multi-line comments are

represented by a comment tree of unit height, in which the text of each separate line of the

multi-line comment is stored separately, and allocated its own terminal node. A single non-

terminal node is allocated to be the parent of all of these terminal nodes. This parent token is

linked into the prey/next terminal list in the parse tree, so that the comment is represented by a

single token. At the same time, by accessing the children of this node, information about the for-

matting of the comment across lines can be obtained without needing to actually read the text

string itself, making the calculations for editing cursor positioning more efficient.

The major change to the parsing algorithm is to the lexical analyzer, which must recognize

a multi-line comment and construct the tree described above. Section (1.1) of the initialization

must also be modified to back along the frontier past comment tokens as well as epsilon tokens.

The while loop becomes:

while token(J/) ----e or token(V) ---- commentcode do
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An additional parse action, noaction, is added to the possible parse actions which can be taken by

the parser. When a comment token is detected, the parser takes this parsing action instead of

passing the parse state and comment to the action routine for lookup in the parse tables. If the

parser is parsing z', this action causes the node representing the token to be chained into the ter-

minal list of the parse tree; if y is being reparsed, then no action is required, and the parser sim-

I

I

ply moves on to the next token.

Specifically, both sections (2.1) and (3.3) of the parsing algorithm need to be modified to

add a fifth parse action (e), in which ] is noaction. In section (2.1) only, a call is made to the

chain routine to insert the comment node into the terminal list.

!

!

5.9. gxtension to Support _;xception Handling for _rrors

Error handling is a difficult issue, and one which significantly complicates the parsing algo-

rithm. Many syntax-directed editors avoid the issue by limiting the user to operations which

!

I

permit only a correct program to be produced. But these limitations are overly restrictive, mak-

ing many simple modifications tedious. By permitting a user to make changes which take a pro-

gram through intermediate incorrect states, much more flexible editing becomes possible. The

I

!

SAGA editor has followed this approach.

The first question which arises in error handling is whether to provide error correction, or

error recovery. Error correction can simplify the implementation, since a trap-door error

t

I
!
I

recovery mechanism can be used to restore a correct environment and permit the parser to con-

tinue to completion. However, the correction method used often restructures the input into a

different form than the user intended, and can create more work for the user to restore his

correct input from the system-corrected result than if he simply fixed the original error. Error

recovery does not repair the error automatically, but permits the editor to continue in operation

I
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Legend:

left thread pointers

< .... leftson and sibling pointers
......... parent pointers

"'- ....................

"'....

type
color ----(blue, green, red);

"'.....

Figure 5-1: Parse tree produced by the insertion of atype color ---- (blue, green, red);". The rec-

tangle gives the display on the user's terminal. In addition to the links shown, each node is also

linked to its rightmost descendant, and each terminal node is contained in a doubly-linked list

connecting it to the immediately preceding and following terminal nodes along the frontier of

the parse tree. To avoid clutter, these links have been omitted since they can be determined by

inspection of the parse tree.

until some later time when the user can repair the error himself. To recover from an error, the

implementation must be able to save the state of the parse and local tree structure for later con-

tinuation, suspend the parse, and return to the editor.
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!

!
_.::: ......

I _. '..... -... .............

!
/jr s ... ''" _. "..........

I .,_ fscalar"_ - = ->T -k .... >7-- .-_

type • "......

I intensity, integer! _/_

color _ (blue, green, red);

! Figure 5-2: Parse tree from Figure 5-?a after the incorrect insertion of _intensity : integer; _.
The text which was not successfully parsed is highlighted on the screen. A marker token has
been inserted into the tree to note the point of the error.

!

!

!

I

!

5.9.1. Single Exception Handling

The SAGA parser divides exceptions into two types: errors and suspensions. An error oc-

curs when a syntax error action is returned to the parse tree constructor by the action routine.

A suspension occurs either when a user requests a partial parse and the parser finishes parsing z',

or when the parser attempts to perform a reduction and detects an insufficient context on the

parse stack, caused by a previous error or suspension.

!
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#

#

type

color_ hue _ (blue, green, red);

"..o

Figure 5-3: Parse tree from Figure 5-1 after the incorrect insertion of u, hue" before the equal

sign. In this case, since the following terminal node had its lthread attribute set to a terminal

node, this attribute has been reset to point to the marker node.
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To process errors, a third type of parse tree node is introduced: the marker node. In addi-

tion, a new attribute nodetype is added to all nodes; this attribute will be set to TERM, NT, or

MARKER, according to whether the node is a terminal, non-terminal, or marker node.

When an error occurs, the parser allocates a marker node, takes the offending terminal node

and all of the remaining nodes in the neztusernode list (which correspond to the tokens in z' not

yet parsed), and makes them children of the marker. The terminal nodes are linked into the

prey/next list. If the lthread attribute of the node following the rightmost child of the marker

I

I

I

I
I
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node points to a terminal node, it is reset to point to the marker node, as are the lthread attri-

butes of any of its parents which also point to the same node. This relinking guarantees that the

parser will detect the marker if it later is reparsing a section following this one, and a reduction

brings it into this area of the tree. The current value of stacktop is saved in the marker node, for

later restoration of the parse stack if a parse is resumed at this point in the tree. An example of

the handling of a syntax error is illustrated in Figures 5-1, 5-2 and 5-3.

When a suspension is indicated, the parser allocates a marker node and links it directly into

the pre_/nezt terminal list just before the node that would be returned by the next call to

neztsym. The node following the marker has its lthread attribute reset to point to the marker

node, as do any of its parents whose lthread attribute is identical. The current value of stacktop

is stored in the marker node, and the parser returns to the editor.

By tokeniging all new input before invoking the parser and linking the nodes into the termi-

nal list when an error/suspension occurs, the editor can display the unparsed nodes even though

the parser has not yet completely incorporated them into the internal structure of the parse tree.

This ability is important, since it permits the user to view his input at the points of discontinui-

ty, and even perform further modifications before, at, or after these points. Since the marker

node is an integral part of the parse tree, trees containing errors can be saved between editor ses-

sions and repaired at a later time.

A number of modifications to the parsing algorithm are necessary to support exception han-

dling. First, a new routine ezception is introduced, to mark the point of discontinuity in the

parse tree:

ezc eption(kind):

Let kind be either ERROR or NOACTION, according to whether a syntax error

or a suspension has occurred.

Let _ be a marker node, to note the point of error.

Let )4 be the incorrect parse node, or nil if a suspension has occurred.

i
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34 = aUoeO;
if kind = ERROR then {

teft, o.(34) = J¢;
parentO¢ ) = addr(34 );

if the parser is in section (2) then {

chain(N, BEFORE, activenode);

chain(_, BEFORE, activenode}, Vl _ j _ n, where the )/i are on the
neztusernode llst;

parent()li) = addr(34); Vl < j < n.

(otherwise we are reparsing y, and At is already in the terminal list)

} else (

leftson(34 ) = nil;

chain(34, BEFORE, activenode);

}
lthread(34 ) -_- stacktop;
if nodetype(lthread(activenode)) = TERM then

lthread(N.) = addr(34), VN., where lthread(NJ _- lthread(activenode).

Since the parser can now terminate in one of two ways, either by a completion or a suspen-

sion, a fourth section is added to the algorithm to handle termination. If the parser completes,

accepting the modification just made, then the algorithm jumps to (4.1). Section (3.3d) is

changed from "the algorithm terminates" to "jump to (4.1)". If the parser suspends, then it will

jump to (4.2) to terminate. To handle suspensions, sections (2.1c) and (3.3c) of the incremental

parsing algorithm must be altered from "jump to the appropriate error recovery action" to

"ezeeption(ERROR); jump to (4.2)". In addition, a test is inserted at the beginning of section (3)

to determine whether a partial parse has been requested by the user, and if so, the code

"ezception(NOACTION); jump to (4.2)" is executed.

These modifications are sufficient to recover from an initial exception which the parser

might encounter. If subsequent parsing is now restricted to requiring the repair of this error be-

fore permitting any other editing, then no further alterations are necessary, and the extensions to

the parser are finished. But a practical editor should be more flexible than this, and so we will
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investigate parsing in the midst of multiple errors.

5.9.2. Multiple Exception Handling

By making two other extensions, to permit the parser to encounter marker nodes in its in-

I

I

put, and to detect marker tokens in the parse stack when a reduction is about to be performed,

we can relax the single error restriction, and permit editing anywhere within the tree no matter

how many errors or suspensions are outstanding.

I

I

A parse tree containing a single error or suspension point will have either a marker node in

the terminal llst, or a continuous sequence of one or more unparsed nodes, all with their parent

attribute set to the marker node which manages the discontinuity. If a parse can occur elsewhere

I

!
I
I

in a tree containing one of these discontinuities, then the marker or an unparsed node can be en-

countered in one of three ways: (1) during reinitialization, (2) if the neztnode variable becomes

set to one of these nodes, and neztsym is called to return the next node as the parser moves for-

ward, or (3) if a marker node is found on the parse stack during a reduction operation. If each of

these cases is addressed, then parsing can be permitted anywhere along the frontier of the tree no

matter how many points of discontinuity exist in the parse tree.

I

I
I
I
i
I

During reinitialization, the parser backs along the frontier immediately before activenode,

to find the most recent token (excluding epsilon tokens and comments) that previously had been

shifted by the parser. If during this operation an unparsed or marker node is encountered, then

the initialization cannot be completed, since there is no previous parse context to retrieve. The

user's modification can still be permitted, however, by deleting the number of nodes specified,

and then calling exception(NOACTION) to link the new input from the nextusernode list into the

frontier together with the marker node. The new input will be retained in the frontier of the

tree, but its parsing will need to be deferred until the earlier exception is repaired.

I
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If the parser succeeds in its reinitialization, successfully processes all of the nodes in the

neztusernode list, and then encounters an unparsed or marker node during a call to neztsym, an

attempt can be made to continue the parse. If neztnode points directly to a marker node, the

marker can simply be deleted from the tree and neztnode advanced. If neztnode points to an un-

parsed node, then the node can be returned to the parser, and neztnode advanced. The parse

should be continued because a node which previously caused an error might parse correctly now,

since the parse context immediately before it may be different than before. Once the last un-

parsed node is passed to the parser, the marker node effectively drops out of the tree. Only the

lthread attribute of the terminal node and zero or more of its parents following the last unparsed

node still point to the marker node. We must add a test to ezeeption to reset the lthread attri-

bute if the node type is a marker as well as a terminal node, then if a new suspension were to oc-

cur at this point, these fields would all be reset to a new marker node, leaving no further refer-

ence to the original marker. If the parse does continue beyond this point, the lthread attribute of

this terminal node will be altered as soon as it is pushed onto the parse stack, along with those of

its parents as soon as they are processed. If the reparse progresses in such a way that these non-

terminal nodes are not reprocessed, then they will be excluded from the final tree when the match

condition holds, and their reference to the deleted marker node will be irrelevant. Therefore, the

only modification required to the algorithm is made to the block of code in neztsym headed by "if

'" which is changed to:neztnode _ nilthen { ... j ,

if neztnode _ nil then [

while nodetype(nextnode) ---- E or nodetype(neztnode) = MARKER do

neztnode ,,--- nezt(neztnode);

)4 *--- nextnode;

nextnode _ nezt(nextnode);

I
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Only one other case remains. Recall that whenever a marker node is inserted into the tree,

the lthread attribute of the following terminal node and any of its parents with an identical

lthread attribute all have it reset to point to the marker node. Therefore, any stack traces which

pass through these nodes will pass through the marker node and continue to the left, always ter-

minating in the bottom-of-stack node B. Any other stack traces which pass through a parent

node whose lthread attribute was not reset will not encounter the marker and the parse can

proceed normally. So the only additional check by the parser occurs in the reduce routine, to

determine if any node in the handle about to be reduced is a marker node. If one is detected, the

reduction cannot be made, and the parser must suspend, since there is inadequate context to be

used. A call to exception is made instead, and the parser inserts a suspension point just before

neztnode. The parse must now be suspended, so reduce must be further modified to return a

value: 0 if the reduction proceeded normally, I otherwise. The parser checks the return code

from reduce, and if it is non-zero, immediately jumps to (4.2) for termination.

With these three cases accounted for, the parser can now support general editing

throughout the tree, regardless of the number of outstanding errors. Although in two of these

cases the parser must suspend when it encounters a marker or unparsed node, the user's input

will still be entered into the tree and displayed, so that flexible editing is supported.

5.10. Extension to Support a shiftreduce Parse Action Optimisation

Some parser-generators optimize their parse tables by providing another parse action in

addition to the basic four actions: shift, reduce, error, and accept. This fifth action, shiftreduce,

is returned whenever it has been determined that a shift action will produce a stack containing a

complete handle to be reduced, and a reduction can immediately be performed. By providing

this fifth action, both the number of states required for the parse tables, and the number of steps

the parser must take, can be reduced.

I
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Back in chapter 3, a sample parse was presented in Figure 3-2. Although the example did

not show any shiftreduce actions, moves la, lb, 4a, 4b, 5a, 5b, 8a and 8b made by that parser

could have been combined into single moves 1, 4, 5, and 8, the actions replaced in the parse

tables by actions "sr6", "st6", "srb", and "sr6" respectively, and parse states 9, 10, and 11 delet-

ed from the parse tables. The reader should note that the parse table states eligible for this

treatment are the ones in which the only non-error actions are reductions by a single production.

In this case, all "s9" actions would be replaced by "srb" actions, all "sl0" actions replaced by

"sr6" actions, and all "sll" actions replaced by "sr8" actions.

Adapting the parsing algorithm for this extension requires simple extensions to sections

(2.1) and (3.3). A sixth case, labeled (f) in the final presentation of the algorithm, for f _-

shiftreduce needs to be added. The code for this new case is simply the code for the shift action

followed immediately by the code for the reduce action which appears in accompanying sections

(a) and (b).

5.11. Algorithm 5.2: The SAGA Incremental LR(1) Parser

The extensions to the incremental parser are now complete. Some other attributes are ad-

ded to the parse tree nodes in the next chapter, and used to support editor operations. But these

attributes are not required for incremental parsing, nor are they maintained or referenced by the

incremental parser, so their presentation has been left for later chapters, so that only the essen-

tial parser extensions could be discussed in this chapter, to simplify the presentation.

The extended incremental LR(1) parser is now restated. This algorithm now handles LR(1)

grammars, epsilon productions, comments, multiple syntax errors, and partial parses (suspen-

sions). The next chapter discusses the editor/parser interface and the command interpreter of

the SAGA editor.
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5.11.1. Routines used in the Parser

allocO:
Allocate a new node )/.

addr()/) _ )/;
rdescend{)/) *-- 3/;

return()/).

apply..match:

Let A --* _ be the reduction for which the matching condition holds.

parent(stack(stacktop, j)) *- parent(irmark), V O <_ j < [ct [;

sibling(stack(stacktop, j)) _-- stack(stacktop, j-I), VO < j < la' [.

sibling(stacktop) 4-- nil.

chain(M, at, .M):

Let hi be a node in the frontier of T, )/a node to be added,
and at he one of BEFORE or AFTER.

if at = BEFORE then {

next(M) ---- addr(hi );
pre_()/)= pre_(hi);
if prey(hi) _ nil then

ne_t(pre_(hi)) = _ddr(_);
preY04 ) ---- addr()/);

}
if at = AFTER then {

I1 next(M) ----nezt(hi );

E pr_,4)/) addr(._);
if nezt(hi) _ nil then

prev(nezt(hi )) = addr()/);

I next(hi) = addr()/);

}.

I exception(kind):
Let kind be either ERROR or NOACT[ON, according to whether a syntax error

or a suspension has occurred.

I Let hi be a marker node, to note the point of error.Let Atbe the incorrect parse node, or nil if a suspension has occurred.

hi = aUocO;

I if kind : ERROR then {
leftson(hi ) = 3/;

parent()/) = addr(.M );

I if the is in section (2) then {parser
chain()/, BEFORE, activenode);

chain()/i, BEFORE, activenode), V1 <__j < n, where the N/are on the

I nextusernode list;

parent(_.) = addr(hi); VI <_j < n.

i } (otherwise we are reparsing y, and )/is already in the terminal.list)

I
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7, I
} else {

leftson(3_t ) = nil; n
ehain(.M, BEFORE, aetivenode);

_thread(.M ) = staektop; I
if nodetype(lthread(activenode)) TERM or nodetype(lthread(activenode))

----MARKER then

lthread(No) = addr(_), VN,, where lthread(N,) = tthread(activenode).

matchcondO:
Let A --* _ be the reduction to be applied.

if irmark -_ staek(stacktop, j), for some 0 <_ j <_ [_ [

and parent(irmark) ---- parent(stack(irmark, h)) VO <_ tt <[a, 1- j
and parent(irmark) _ parent(stack(irmark, Ic_I- 3))

and token(parent(irmark)) = A
and rdescend(stacktop) = rdescend(parent(irmark))
then

return(true);
else

return(false).

neztsymO:
Let N be a pointer to a parse tree node.
Variable savenode is set in routine prepend below.

if savenode _ nil then {
N _ savenode;

savenode 4- nil;

} else if nextusernode _ nil then {

N 4- neztusernode;

neztusernode 4- nezt(neztusernode);

} else if nextnode _ nil then {
while nodetype(neztnode) ---- e or nodetype(neztnode) ----MARKER do

neztnode 4- nezt(neztnode);

N *-- neztnode;

neztnode 4- nezt(neztnode);

} else {
N *-- alloeO;
token(N) 4- eo]:, (the end-of-file token code)

}
return(N).

prependO¢):

savenode 4- addr(N).

reduce(i, 71):
Let i be production A --* c_, and Nj be the nodes in the handle to be reduced,

2<_j<_n,n=lc, I.

If n ---- 0 then

I

I
I
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n _..--I;

if nodetype(Nj) --_ MARKER, V1 _ j <_ n then {

exception(NOA CT[ON);
return(I);

}
parent(stack(stacktop, j}) _ addr(N), VO < j _ n;

sibling(stack(stacktop, j)) _-. stack(stacktop, j- 1), VO _ j _ n;

sibling(stacktop) *--- nil;

rdescend(J¢) *-- rdescend(stacktop);

token(N) _ A;

prepend(N);
return(O).

shift(N, newstate):

lthread(N) *- stacktop;

pstate(N) _ new-parse-state;

stacktop _ addrO¢ ).

unchain(N):

prey(next(N) = prey(N);

nezt(prev01 ) ----nezt(N).

5.11.2. The SAGA Incremental LR(1) Parser

parse(activenode, deletecount, nextusernode, parseoption):

Let Tbe the parse tree for the string w = xzy.

Let z' be a replacement string for z, and w' _- xz'y the result.

I. Initialization

(1.1) if w _ e (the empty string) then {

J¢ *- activenode; (the first symbol in zy)

while N E z do { (delete z)

)¢ *-- nezt(N);

unchain(pre_(_/));
}
activenode _ N;

nextnode _ aetivenode;

N _ prey(N); (reset the parser...)

while token(N) =e or token(N) ---- comrnentcode do

N ,---prey(N);
irmark _ lthreadO¢);

stacktop ,,- lthread(N);

if nodetype(N) = MARKER then {

ezception(NOA CTION);

jump to (4.2)

I
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(1.2)

}
}.

if w = e (i.e., w' is being parsed from scratch) then {
irmark _ B;

stacktop _- B;

neztnode _ nil;

}.

2. Analysis of z'

(2.1) N_ ne_tsym();
action(pstate(stacktop), token(N), f, newvalue);

Execute (a), (b), (c), (d), (e) or (f) according to the value of f.

(a) f----SHIFT.
if the symbol to be shifted is activenode then

jump to (3);

else {

shift(N, i);
chain(N, before, activenode);

}.

(b) f = REDUCE i. Let i be the production A --* _.
if irrnark = stack(N, i) for some 0 <= j < la_I (i.e., irmark must be updated)

then

irmark _ stack(N, la' I);

if l_ I> o then {

N *-- aUocO;
if reduce(i, N) : 1 then

jump to (4.2);

} else {
N +-- alloc();
token(N) _-- _;

shift(N, i);

N *'- aUoc(};

if reduce(i, N) = I then

jump to (4.2);

}.

(c) f = ERROR.

exception(ERR OR);

jump to (4.2).

(d) f--ACCEPT.

Jump to (4.1).

(e) f= NOACTION.

chain(N,before,acti_enode).

I
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(r) f -: SHIFTREDUCE.

Execute sections (2.1a) and (2.1b) above.

3. Analysis of y

(3.1) If parseoption ----SUSPEND then

jump to (4.2).

N _ neztsymO;

oldtable *--- pstate(N);

shift(N, i};

(3.2) if oldtable _ pstate(stacktop) then

jump to (3.3);

(3.3)

(a)

(Let N be the node which stores the first symbol of y.)

Otherwise, skip steps of the analysis of y as follows:

while sibling(stacktop) _ nil do {

stacktop _ sibling(stacktop); (we enter directly in a reduction state).
N _ stacktop;

t
I

action(pstate(stacktop), token()/), f,/}; (we know / ----REDUCE i, i being

production A --* ct).
if matchcond holds then {

apply_.match;

accept w', terminating the algorithm.

}
if irmark = stack(stacktop, j) for some 0 <-- j < Io Ithen

irmark-- staek(stacktop,Io I);
oldtable *-- pstate(parent(stacktop)_,

if parent(stack(stacktop, j)) = parent(stack(stacktop, kJ) V 0 <= 3", k < ic_ Ithen {

the entire subtree of Trooted in parent(staektop) is reused:

N _ parent(stacktop);

lthread(N) 4-- staek(staektop, l a i).

action(pstate(staektop), token(N), f, newval,,4;

pstate(N) _ newvalue.

} else {
s new node is allocated:

N *-- alloc(f,

if reduce(i, ,14)-: 1 then

jump to (4.2);
}
Jump to (3.2).

X *- neztsym(input);

action(pstate(staektop), token(M), f, i);

Execute (a), (b), (c), (d), or (e)according to the value of/.

f = SHIFT.

oldtable ,,--- pstate(N);

shift(N,i);
jump to (3.2).

i



82

(b) f = REDUCE i. Let i be production A --* rt;
if matchcond holds then {

apply._match;

jump to (4.1);

}
if irmark = stack(stacktop, j) for some 0 <= j < Io Ithen

irmark *-- stack(stacktop, I(r [);

)_ _ allocO;

if reduce(i, J¢) = i then

jump to (4.2);

jump to (3.3).

(c) f = ERROR.
excep tion(ERR OR);

jump to (4.2).

(d) f =ACCEPT.
Jump to (4.1).

(e) f ----NOACTION.

(f) f = SHIFTREDUCE.
Execute sections (3.3a) and (3.3b) above.

4. Termination

(4.1) status _-- COMPLETE;

return(status).

(4.2) status = SUSPEND;

return(status).

5.12. Summary

In this chapter, we have presented the editor's incremental parser. We altered the attri-

butes associated with the parse tree node to make the parse tree suitable for use with an editor.

The parsing algorithm was extended from LR(0) to LR(1) grammars. It also has been extended

to support grammars containing productions with empty right hand sides.

We proposed a new way to handle comments, which permits their general use in language-

oriented editors, as in text editors, resolves their storage problem in parse trees, and permits uni-

formity of access by editor commands to both comments and syntactically meaningful tokens in

the tree.
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We redefined the reduce operation, proposing an alternative which permits the parser to

treat non-terminal and terminal tokens uniformly. We also combined the parsing action and

goto function into a single action. Duplicate code was eliminated, improving efficiency, and pro-

vide support for the editor to pass sub-trees to the parser.

Our error handler was described, which permits editing throughout the parse tree in the

midst of multiple errors, and the editing of erroneous text which has not yet been parsed. We

have elected to provide error recovery, not error correction, since it supports the above abilities

while letting the programmer correct his own errors, which we found to be simpler for both the

programmer and the editor. We added the ability to perform a partial parse, only analyzing the

new input, and then suspending the parse to await further instructions. This feature permits

controlled editing which takes the program through incorrect intermediate states, improving the

flexibility of the editor.
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CHAPTER 6

THE SAGA EDITOR

The SAGA editor has been designed to be modular and retargetable to more than one

language. The modularity concentrates the language-dependent code in a few modules, allowing

most of the source code to be re-used intact when editors are built for new languages. It also

permits experimentation with different parser-generating systems for a given language, so that

the strengths and weaknesses of different systems can be compared. A pictorial breakdown of the

I

I
I
I
I

I
I

I
I

editor's modular structure is presented in Figure 6-1. This chapter will discuss these modules,
J

and their interactions with one another. The editor/parser interface is discussed first, editor

commands next, then editor interaction with other development tools, and finally the editor in- I

The next chapter discusses the generation of editors for different !terface to the file system.

languages.

6.1. The Editor/Parser Interface I

The editor/parser interface consists of four modules: the parae tree constructor on the edi- I

tor side of the interface, and the lezical analysis, syntaz analysis and semantic analysis modules I
on the language-dependent parser side of the interface. The parse tree constructor implements

the incremental LR(1) parsing algorithm presented in the previous chapter. Header files are pro- I

vided for each of the analysis modules; any parser-generating system which produces tables for

which code can be written to meet the requirements of this interface can be used with the SAGA I

editor. I

I
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l Figure 6-1: SAGA Editor Modular Structure

II

II
I
I

During editing and language analysis, all interaction between the editor and the parser oc-

curs through two routines: tokenize and parse. The tokenize routine converts a buffer of charac-

ters into a linked list of terminal nodes; the parse routine inserts these nodes into the parse tree,

also removing any nodes which are being deleted. Calls to the semantic analyzer are embedded

a
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within the incremental parser. A parser initialization routine also exists, as do a few other rou-

tines to generate the follow set for the language and to support the parse tree constructor.

6.1.1. Lexieal Analysis

When the user makes a change to his program, the input handler of the editor constructs a

text image of the input and the token being modified. If the change is between two tokens with

no intervening space, the text from both' tokens is included in the image. The lexical analysis

routine tokenize then tokenizes this image. If the input spans several lines, tokenize is called on

each line as it is completed, and the returned nodes are appended to the neztusernode list being

constructed. The change may cause the text to the right of the modification to be re-examined,

in which case the analyzer may need to request further input from the input handler in order to

properly complete its task. A lookahead character (the character on the screen immediately after

the text image) is always passed to the analyzer, which it may use to decide whether it requires

further input. If the lookahead character is not part of the current token, then the tokenizer is

finished, and returns a list of parse tree terminal nodes which represent the tokens. Otherwise,

the tokenizer returns the list of terminal nodes and the remaining text image, with a request to

be called again with further input. In the case of a matchfiz token (such as a comment or string)

which has not yet been completely recognized, the tokenizer returns and the input handler enters

a "token collection" mode in which the user can skip the cursor forward to include existing text

in the new matchfix token. The user can then insert the terminating delimiter at an appropriate

point.

The interface to the language-dependent lexical analysis routines is defined in the header

file lexfns.h, summarized in Figure 6-2.
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error *-- lexinit(treeexists);

nodelist *--- tokenize (buffer, neztc, lastc, lookahead, addinput);

where:

addinput:. A Boolean, set by tokenize to request more input.

buffer: A buffer of characters.

lastc: The last character position used in a buffer.

lookahead: The character after' the last character passed to tokenize.

neztc: The first character position used in a buffer.

treeezists: A Boolean, set to true if an existing tree is being edited.

Figure 6-2: Lexicai Analysis Interface
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When a lexicai error is encountered, the remainder of the input string is stored in a

separate parse tree terminal node, marked as an unknown token, and returned along with any

other terminal nodes that were constructed. The calling routine can still make further calls to

the lexical analyzer, until all input has been lexicaily analyzed. These nodes will still be passed to

the parser later.

When the tokenizer requests further input, it sets addinput to true and returns with nezte

set to the first character not included in any token. Its caller copies the characters between nezte

and lastc back to the beginning of the buffer, retrieves the text representation of the following to-

ken, appends it to this buffer, and marks the token for deletion. It calls the tokenizer again, and

this process repeats until the buffer can be entirely tokenized.

By completely tokenizing the input before performing any parsing, it can be guaranteed

that text read from an input file will become a part of the frontier of the parse tree whether or

not it is syntactically correct, without requiring additional code to handle this situation as a spe-

cial case. The implementation is simplified, since it is not necessary to treat a syntax error in a
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text file differently from a syntax error in text typed by the user.

6.1.2. Syntax Analynis

After the lexical analysis is complete, the parser is called to insert the new nodes into the

parse tree. The parser can be run in one of two ways: to suspend or complete, according to the

command given by the user. Normally the user asks the parser to run to completion, with it

reparsing y after it has finished parsing z', where z' represents the new input, and y the

remainder of the terminal string past the new input. However, the user can request a partial

parse, which causes the parser to suspend parsing after analyzing z', and before any reparsing of

y. The parser also will suspend whenever it encounters a syntax error, regardless of the parse re-

quested. A suspension will leave the parse tree with a discontinuity, but with the state and local

structure saved so that the parse can be resumed later. The parser also can process deletions us-

ing either a full or partial parse.

Parser suspension permits modifications which take the parse tree through intermediate

illegal configurations, as, for example, when a begin and distant matching end symbols are be-

ing inserted or deleted. The presence of this option greatly increases the flexibility of editing

operations, since the user can make a change in several operations, without concern for maintain-

ing syntactic correctness at each step.

When a syntax error is encountered, the offending token (which could be the unknown to-

ken constructed above) is highlighted and diagnostics are displayed. All new terminal nodes are

still inserted into the parse tree on the prey/next list discussed earlier; thus they may be accessed

by the display manager even when they cannot be successfully parsed. The user has the option of

repairing the error immediately, or of scanning through other portions of the program and possi-

bly making modifications there (needed, for example, if a begin keyword was mistakenly omitted

I
I
I

I
I

I
I
I

I
I
I

I

I
I
I

I
I

i
I



I

I
I

I
I

I

89

and its matching end just encountered).

Syntax analysis is performed in the parse tree constructor and syntaz analysis modules of

the editor. The interface to the language-dependent syntactic analysis routines is defined in the

header file parse/ha.h, summarized in Figure 6-3. The parse tree constructor, parse, is the incre-

mental LR(1) parser presented at the end of the previous chapter. It communicates with the
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_ar Vpgenname: alia;

Vpgenrev: at/a;

Vlangnarae: alia;

Vlangre_: alfa;

Name of the parser-generator used.

Version of the parser-generator.

Name of the language recognized.

Version of the language (grammar spec.).

error _ initparser(treeezists);

action (tokencode, state, f, newvalee);

legalnonterm (state, stackptr, tokenlist, length);

legalterm (state, stackptr, tokenlist, length);

nametokencode (tokeneode, buffer, lastc);

tokencode *-- ruleleftoide (rulenuraber);

length _ rulelength (rulenumber);

where:

buffer:. A buffer of characters.

f. The parsing action returned.

lastc: The last character position used in a buffer.

length: The number of items in a returned list.

rulenumber:. A production rule number.
state: The current parse state.

stackptr:. A pointer to the node on the top of the parse stack.

tokeneode: The code (integer) assigned to a token of the grammar.

tokenli_t: An array of token codes.

treeezists: A Boolean, set to tree if an existing tree is being edited.

Figure 6-3:Interface to Syntax Analysis Routines
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parserdecisionroutinesthroughan interfacewhichsupportsthe basic shift-reduce parsing algo-

rithm. This interface permits the use of different parsers from a variety of parser-generating

systems in the construction of SAGA editors. Any parser generating system may be used if the

resulting parser and its tables can support the functions required by the interface. Since different

parser-generators have different capabilities, this permits us to choose a generator best suited for

a particular language.

The parse routine takes an editing location, a count of the number of nodes to be deleted,

the list of nodes to be inserted, and the parsing option suspend/complete. It in turn calls a rou-

tine action, on the language-dependent side of the interface, in the syntactic analysis module.

The action routine is passed the current parse state and a token code; it uses these values to in-

dex into a set of parse tables to produce a parsing action and either a new parse state or a pro-

duction rule number, according to the parsing action.

Two routines, ruleleftside and rulelength, are defined which take a production rule number

and return the token code of the token on the left hand side of the rule, and the length of the

rule, respectively. These routines are used by the reduce routine described earlier to obtain the

necessary information about the production A _ a to be used in the reduction.

Routines legalterm and legalnonterm pass in the current parse state and value of the stack-

top variable, and expect to receive a list of terminal or non-terminal token codes. These codes

are used to construct the follow set to be displayed and to determine whether a non-terminal

node can be inserted at a given spot in the terminal list.

Routine nametokencode passes in a token code and expects to receive a text string which is

the printable form of the token. If the token code is a reserved word or a special symbol (opera-

tors and punctuation), then that reserved word or symbol(s) should be returned. If the token

code is a generic class, such as an identifier or constant, then that identifier or constant should be
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retrieved from the string table and returned. If the token code is a non-terminal token, then the

text string used to name this token should be retrieved if available, or the production rule

number enclosed in angle brackets otherwise. This value is most often used in debugging traces,

but could also be used to display a non-terminal follow set (for a language designer, for example)

or as a printable name for a place holder for an unexpanded or elided sub-tree.

Lastly, a call to a routine initparser !s provided which passes in a flag indicating whether an

editing session is beginning with a new or preexisting file; this routine should contain code to load

the parse tables and initialize any internal data structures to be used by the other routines in this

module. It also should initialize several character strings which are used to display the version of

the language and parser-generating system in use. Tables from any parser-generator can be

used as long as access code to produce the return values from these initial values can be written.

6.1.3. Semantic Analysis

Support is provided for semantic analysis to be performed through a syntax-directed

analysis scheme. The interface to the semantic analysis routines is defined in the module

semanfns.h, summarized in Figure 6-4. As the parser shifts and reduces parse tree nodes, it calls

semantic evaluation routines in the semantic analysis module. The semantic routines can either

evaluate the changes as they are made, or can record the changes as the parser runs and perform

the actual evaluation after the reparse has completed. When a semantic error is detected, a se-

mantic error flag is set in the node, and that token is displayed in highlighted form. Since se-

mantic errors do not affect the integrity of the parse tree, there is no impact upon the incremen-

tal parser. The user can repair the error when convenient.

Calls to these routines are placed into the incremental parsing algorithm, to automatically

invoke these routines whenever a parse occurs. Any style of semantic analysis which can be per-

i
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evalinit (treeezists); Beginning to edit a new file.

evalstart (stacktop, state); An incremental reparse is beginning.

evalcontinue (tag); Parser has reached a suspension point.

Tag was returned by evalsuspend earlier.

evaldelete (activenode, count);

evalshifl (stacktop);

evalreduce (stacktop, rulenumber, parent);

evalphase2 (yfirst: nodeindez);

tag *--- evalsuspend (stacktop, state);

error *- evalfinish (subtreeroot);

error *--- evalclose;

error _ e_al (tree, activenode);

evalerror (activenode, buffer, lastchar);

evaldebug (tree, activenode);

Delete count nodes, beginning at activenode.

A node has just been shifted.

About to reduce stacktop by rulenumber

to parent.

Beginning 2nd phase; the reparse of y.

Suspending a parse; tag will be passed to
evalcontinue later.

Completed a parse; error set if any semantic
errors.

Ending an editing session; error set if cannot
save semantic data.

Called by editor eval command.

Return semantic error message for termnode

in buffer:lastchar.

Called by editor evaldebug command.

where:

activenode: parse tree node on which the editing cursor is positioned.

buffer: contains message describing semantic error.

lastchar: length of message in buffer.

parent:, node to be parent after reduction is made.

rulenumber: production rule number used in this reduction.

staektop: a pointer to the node on the top of the parse stack.

state: the current parse state.
subtreeroot:, non-terminal node at which incremental reparse terminated.

tag: an integer returned by evalsuspend; passed to evalcontinue later.

tree: a pointer to the header record for the parse tree.

treeezists: set to true if the parse tree already exists.

yfirst:, the first old terminal node after the new input nodes.

Figure 6-4: Interface to Semantic Analysis Routines
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semantic analysis may be performed either in step with the syntactic analysis, in a separate pass

over parts of the tree after the syntactic analysis has completed, or as a separate process running

in parallel with the editor. Since semantic analysis, even when performed incrementally, takes a

significant amount of time to complete, analysis can be deferred and performed only when

specifically directed by the user.

Routine evalinit is called during editor initialization, to permit the semantic evaluator to

initialize its data structures, and start up its own process if one is desired. Evalstart is called

whenever a new parse begins, except if one is beginning at a suspension point, when evalcontinue

is called instead. Evalcorttinue is also called each time the parser reaches a discontinuity in the

neztnode list. Evaldelete is called before the parser actually modifies the tree; it is passed both

acti_enode and delcte¢ount which indicate the nodes to be deleted, to permit the semantic

analysis routines to nullify any synthesized attributes, if required. Each time the parser shifts a

node, evalshi/t is called with the stacktop variable after the operation is complete. Each time the

parser performs a reduction, evalreduce is called with stacktop and the new parent node after the

parent and its children are linked together, but before the reduction is performed, to make access

to the children easier. When the parser completes parsing the new input string z' and begins

reparsing y, already present in the old tree, evalphase2 is called to indicate the parser has entered

the next phase of the parse.

If the parse completes normally, evalfinish is called; otherwise evalsuspend is called, and the

integer value returned by it is saved in the marker node to be passed to evalcontinue when this

discontinuity is later reached. At the end of an editing session, evalclose is called to permit any

data kept in memory to be written to disk, and to terminate the separate semantic analysis pro-

cess, if one was begun.

I
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Three other semantic analysis routines exist which are tied to editor commands. Eval is

called when the "eval" command is executed; it provides support for editing commands which ac-

cess the symbol table produced during the semantic analysis. Evalerror corresponds to the

"evalerror" command, is called with the address of a node containing a semantic error, and re-

turns an error message to be displayed for the user. Lastly, evaldebug is linked to the editor com-

mand of the same name, and provides an entry point to the semantic analysis routines to support

interactive debugging, such as display of the data structures used by the semantic analysis rou-

tines.

These routine skeletons are provided by the editor for the language implementor to enable

him to interface the editor to a parser-generator of the implementor's choice, so that different se-

mantic analysis techniques can be tried.

The SAGA group is presently studying incremental semantic analysis and building an attri-

bute evaluator for languages specified by regular right part LR(1) grammars [Beshers, 84] using

maintained and constructor attributes [Beshers and Campbell, 85]. An independent investigation

into semantic analysis based upon the CFF/AML system designed by Kaplan [Kaplan, 85] is also

beginning. A non-incremental semantic evaluator was recently produced [Kimball, 85] to pro-

vide support for a code generator to produce object code directly from the parse trees construct-

ed by the editor. Further reports about semantic analysis schemes should appear in future Ph.D.

dissertations and Master's theses by other members of the SAGA research group as this related

research matures.

6.2. The Command Interpreter

The user of a SAGA editor inputs his program in free format from the keyboard; templates

are not required, and no non-terminals appear on the screen. The editor is screen-oriented; the
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user positions the cursor at any point within the file of text on the screen and inserts, replaces or

deletes text directly at that position; the input is tokenized, parsed, and inserted into the pro-

gram display window. At any time during the editing process, the user can request that the edi-

tor print the set of legal tokens (the follow set) that can be inserted at the cursor position. The

user also can select more complex editor commands by using the command mode of the editor,

which temporarily displays commands at the bottom of the screen. As such commands are exe-

cuted, the screen is updated immediately to display the changed text. Editing commands enable

the user to insert, delete, move, copy, or replace arbitrary fragments of text. These fragments

can be selected by cursor positions, characters, strings, lines, syntactic constructions and eventu-

ally by semantic constructions within the text. For example, in a Pascal program, a user may

select an if ... then ... else ... statement, discard the else ... part, and copy the remaining frag-

ment to another location.

6.2.1. Balie Commands Capabilities

Since the user's text is parsed and stored in parse tree form, it is possible to take advantage

of this structure through structure-oriented commands which specify operations in terms of to-

kens or sub-trees. But more significantly, unlike template driven syntax-directed editors, which

constrain editing to limited sub-tree replacements, by basing the SAGA editor upon an incre-

mental parser and permitting free-f0rm input, it is possible to retain the text-oriented com-

mands that manipulate characters and lines as well.

During the execution of an editing modification, the editor communicates with the parser

through two routines: tokenize, which converts characters to terminal nodes, and parse, which

integrates these nodes into the parse tree. All commands which modify the text are executed

through this interface. The basic modification operation provided by the parser is to delete

and/or insert a sequence of tokens at an arbitrary token position along the frontier of the parse

I
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tree.

It is possible to extend the editor/parser interface to permit the deletion and/or insertion of

an arbitrary sequence of characters, at an arbitrary character position along the frontier of the

tree, by defining a data structure consisting of a buffer of characters raodbuf, a pointer deletenode

to a node to be deleted, and a deletion count deletecount,

When a sequence of characters beginning in the middle of a token is to be deleted, the ad-

dress of the node containing the token in which the sequence starts is assigned to deletenode, and

deletecount is set to I. The characters from the beginning of the token, UP to but not including

the first one to be deleted, are copied into the beginning of modbuf. Then deletecount is incre-

mented for each additional token that corresponds to the characters to be deleted. If new charac-

ters will also be inserted, these characters are appended to modbuf, which is tokenized each time

it contains a complete line of input. At the end of the insertion, any characters in the last token

to be deleted which are not in the character string to be deleted are copied to the end of modbuf

before it is tokenized.

Now the parser is called, with activenode set to deletenode, deletecount supplying the

number of nodes to be deleted, the neztusernode list supplying the nodes to be inserted, and par-

seoption set to the user's choice as to whether the parse should suspend or complete once the im-

mediate modification is complete. The parser integrates the new input into the parse tree, treat-

ing any errors as discussed earlier.

Since modifications can be permitted from any character position to any other character

position, it is straightforward to provide modifications on any integral number of tokens, lines, or

sub-trees, as long as a mechanism is provided to the user to specify these other types of units.

All other editor commands are constructed upon this basic mechanism, by decomposing more

complex editing operations into sequences of this basic modification.
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6.2.2. Screen Mode

When invoked in screen mode, the SAGA editor displays a screen full of text (parse tree

terminal nodes), and positions the terminal's cursor on the first node displayed. The user posi-

tions this cursor and selects sections of the tree to be acted upon by an editor command. Editor

commands are single control characters; a line-mode escape jumps the cursor to the bottom row

of the screen to permit a line-mode editor command to be typed. The control characters are tied

to the basic line-mode commands, or sequences of these commands. A map table is planned as a

future extension which will enable the user to customize the editing interface.

To insert text in screen mode, it is only necessary to position the cursor at the point of the

insertion and then directly type the characters to be inserted. All non-control characters are

treated as data, and are placed into the text buffer to be tokenized and parsed. Once a partial

line of input text has been typed, single characters may be erased by typing a backspace

(control-H), and the entire line of new input erased by typing control-U. Once a newline (or car-

riage return) is typed, the input line is immediately tokenized, and queued for parsing. Each new

line of input is treated in the same way. No (syntactic) parsing is actually done until the input is

terminated via an escape character. Alternatively, The user may request a partial parse by ter-

minating the input with a control-P instead. At this point, the parse is performed, and any lexi-

cal, syntactic, or semantic error highlighted on the screen. The user may repair the error right

away, scroll through other parts of the file, make another editing change before the point of the

error, or exit the session (to repair the error in a future session).

6.2.3. Line Mode

The line mode command syntax has the following form:

/arguments/command/parameter,/

!
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Argument

Count

Position

String

Type

character

integer
line

subtree

token

character

range

sub-tree

tree node

S]¢ntax

-{elc)
n

.{ilL}

.{s', S}
-(tiT)

@ll:l m
n _

"string-o/-charac te rs"

where:n is an integer, *, or -*.

II, It are single letters that name editor pointers, or if absent, the terminal's cursor.

* stands for rnazlnt, the maximum integer value permitted on the system.
-* stands for -mazint.

a is the address of a parse tree node (an unsigned integer).

Table 6-1: Editor argument types and their syntax.

Only the command name is required, and only as many characters as necessary to disambiguate

it from other commands. The preceding arguments generally specify a section of the parse tree

to be acted upon by an editing command. These arguments are evaluated by the editor's corn-

mand interpreter, and placed onto an argument stack before the command is invoked. Argu-

ments only apply to the command they directly precede, unless parentheses are used to distribute

them across several commands. Not all commands take all argument types; legal ones are listed

with each command, while illegal ones simply cause an unezpected argument error message to be

displayed. In general, commands take all argument types which "make sense" for that corn-

mand.

The trailing parameter8 specify additional arguments specifically for that command, and

that command only. Unlike preceding arguments, trailing parameters are not evaluated before

the command is invoked, but are placed on the argument stack as a string of characters. This is

especially useful for the filter command, which executes a separate process specified by the user,

passing to it these parameters as command llne arguments.
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In additionto the predefinedcommands, the user may alsodefinenew commands as se-

quences of alreadyexistingeditorcommands. This mechanism provides a convenientway to ex-

periment with composite commands. Commands which are found to be particularlyusefulmay

be added to the basiccommand setfor improved execution.

Nine types of arguments are presentlyrecognized:integers;counts of characters,tokens,

lines,trees;a characterposition;a range (.apairof characterpositions);a sub-treeroot position;

and a characterstring.Counts are allrelativeto the locationof the editingcursor,positionsare

at a specifictreelocation,integersare interpretedas appropriateto the command, and character

stringsrepresentsearchstrings,filenames, and so on. The argument types and theirsyntax are

given in Table 6-1.

6.2.4. Predefined Comn_nds

The editor's predefined commands may be grouped according to function: positioning com-

mands, modification commands, formatting commands, informational commands, control com-

mands, and environmental commands. Table 6-2 presents the argument types permitted with

each command. Each of these command groups is described below.

8.2.4.1. Positioning Commands

The positioning commands move the editing cursor through the text displayed on the

screen (and through the frontier of the parse tree), and also place auxiliary editing pointers into

the parse tree for later reference. There are four commands: back and forward for cursor posi-

tioning, and set and clear for auxiliary pointer placement. Each of these commands corresponds

to a line mode command; in screen mode, characters can be mapped to either specific commands

or specific argument/command pairs, so that move-by-char, move-by-token, move-by-line and

move-by-tree commands can be made single key strokes, appearing as individual commands

i
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Command

Positioninf

back

clear

forward

set

Modification

delete

fread

insert

parse

pdehte
pinsert
fwrite

Forraattinf

None
Argument Types

i ] 1 ] s t eh ra st

X X X X X X X X X X

X

X X X X X X X X g X

X

X X X X X X X X

X X X X X X X X

X

X

X

X

X

cchar x x

close x x

ochar x x

open x x

X X

X X

X

X X X X X X" X X X

X

X

Informational

error
follow

help

print

Control

define

exec

loop

(...)
off

on

quit

X X X X X X X X

X X X X g X X X

X X X X X X X X

En_ironraental

csh

filter
sh

X X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

Table 6-2: Basic editor commands grouped by function

showing the argument types permitted with each one.

although they are actually a single command invoked with different arguments.
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8.2.4.2. Modification Commands

Modification commands change the text of terminal tokens and/or the structure of the

parse tree. These commands are: delete, partial-delete, insert, partial-insert, fread, fwrite and

parse. The delete and insert commands request a complete parse, fread corresponds to insert tak-

en from a text file, and parse invokes the parser at a particular location to remove a suspension

point left by some earlier suspended parse.

6.2.4.3. Formatting Commands

Formatting commands rearrange the display of the text on the screen by altering the

number of newlines and spaces between terminal tokens. They differ from modification com-

mands in that neither the terminal token text nor the parse tree structure is altered, so that the

parser is not invoked. Reformatting which would cause two tokens to be reevaluated into one is

prohibited; a deletion command instead is required to remove the intervening spaces.

6.2.4.4. Informational Comnmads

These commands provide assistance to the user. Four are pre-defined: help, error, follow-

set and print. The help command lists the editor commands and available help topics; help key-

word provides more specific help about the command or topic supplied in keyword. The error

command displays an error message for the highlighted token under the editing cursor. Only lez-

ical error, syntaz error and semantic error are provided by the editor by default; customized code

must be written for one of the language-dependent modules or a filter process in order to provide

more language-specific diagnostics.

The follow-set command asks the editor to display the set of legal tokens which could be in-

serted just before the token on which the editing cursor is positioned. It can be a valuable diag-

nostic for a user with a non-obvious syntax error to repair, for a language implementer to verify

I
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his parse tables interactively, and to acquaint a programmer with a new language. The print

command is only necessary when the editor is run in line mode, to list portions of text.

6.2.4.5. Control Commands

The control commands affect the editor's internal environment, setting options and control-

ling command definition and execution. These commands consist of parentheses, loop, define,

ezec, off, on and quit. The parentheses command, specified with a pair of parentheses, groups

several commands together to distribute arguments or perform an iteration. The loop command

executes the following command until failure; applied to parentheses, it iterates over a sequence

of commands until one produces an error return (e.g. forward when positioned at the end of the

parse tree).

The define command associates a name with a sequence of editor commands; use of this

name as a command invokes this command sequence. The ezec command takes a file name

string argument and reads and executes the editor commands specified in the file. It is used to

define and execute commands in a file during editor initialization, and to pass command se-

quences from a filter process back to the editor for execution.

The off and on commands take several keyword arguments and set or clear corresponding

Boolean variables in the editor which control its behavior. These commands are mostly used to

interactively toggle debug and trace variables to monitor ad measure editor execution. Lastly,

quit terminates an editor session.

6.2.4.8. Environmental Commands

The environmental commands affect the editor's external environment, such as its interface

to the file system and other processes that are running on the system. Four are presently

defined: sh, csh, filter and make. Both sh and csh pass their arguments out to UNIX cshell and
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shell programs for execution. When run in screen mode, results of these programs can be placed

into a pop-up window on the user's terminal.

The filter command executes the named process, passing it the name of the file currently

being edited, an optional sub-tree root or token range, and any other command-specific parame-

ters given on the command line. Filter processes greatly increase the power of the editor by pro-

viding a modular way perform analyses on existing parse trees. More will be said about filter

processes later in this chapter.

8.2.5. User-Defined Commands

Given the basic command set described above, a number of additional commands can be

defined and included in all editors to provide increased functionality. A copy operation can be

defined by pick and put commands:

define pick /write tempfile

define pet /read tempfile

By splitting.copy into two components, only one location need be specified at an instant, simpli-

fying the operation since the user does not need to keep both the source and destination locations

in mind at the same time. An additional variant can be created which picks up and deletes, to

perform a move operation.

Commands such as move to the end o/the line can be constructed from the predefined move

I line/orward; move I character back. Any of these can be used in screen mode by assigning a

control character to the user-defined command.

Command extensibility permits us to try out different command combinations easily, and

permits language-dependent operations to be defined for each different type of editor. Advanced

language-dependent operations, such as tree transformations, can be performed through a

!
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separate process tied to the editor, and invoked through a user-defined command. The extensi-

bility supports customization of the editor toward a specific development environment, and

makes many more resources available to the user.

6.2.6. Screen Management

The SAGA editor employs the Maryland Window Package [Torek, 83] as its screen

manager. This package references the/etc/termcap terminal capability file available on UNIX

systems to determine the characteristics of the terminal in use. The package supports the de-

claration of a text buffer and associated window into that buffer, with the window placed on some

portion of the terminal screen. Multiple, overlayed windows are supported, and the package runs

an algorithm to detect moved blocks of text as well as isolated modifications, and attempts to

send a minimal number of characters to the terminal to update the display to correspond with its

internal text image.

The package provides a flexible environment for the editor, which uses the overlaid window

capability for pop-up windows that contain information such as a terminal follow set or output

from a filter process run from within the editor.

6.2.7. Invoking the Editor

The editor I is invoked with a command of the form:

epos [option_] _name_,

Options are single letters preceded by a minus sign, and the names are SAGA directories contain-

ing structured files. The editor can be run in either screen-mode or line-mode, depending on the

1The SAGA editor has been tentatively named epos, until a more suitable name is found. Webster's
dictionary defines epoa as %pic poetry', appropriate since the SAGA project is investigating software
development and the software life-cycle for full programming languages and grammars, not just simple
subsets; and also as %n epic poem, handed down by word of mouth', appropriate for the earlier days of
the editor development, since new features became available some time before they became documented!
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terminal in use and the user's preference. Epo8 _name> attempts to run the editor in screen

mode, and failing that, uses line mode. Epos -l _narne> forces the editor to use line mode, re-

gardless of the terminai's screen capabilities.

The _name> argument is used to create a directory which will contain the files of struc-

tured data (parse tree, symbol table, object code library, etc.) that will be produced by the edi-

tor. If already existent, _name> must be a directory containing the structured data files from

an earlier editing session. Files in directory _name> should only be modified by SAGA pro-

grams, and only files created by SAGA programs should reside there. (During program execu-

tion, a number of temporary files of varying names are created, and name collisions are possible.)

Although actually a directory, <name> can be thought of conceptually as a file containing

structured information, and since the user need not be concerned with the actual organization of

the information in this directory, it will be referred to as a file throughout this section.

<Name_> must have been produced by a SAGA program recognizing the same language as the

editor being invoked.

6.3. Filter Processes

The SAGA editor provides a mechanism by which separate processes can be invoked during

an editing session to traverse portions of the parse tree being edited. These processes, termed

filter processes, read, analyze and possibly transform the parse tree, returning the result to the

editor. By defining new commands with the editor's user-defined command facility, which in-

voke filter processes, authors of filters can provide complex operations as simple commands. A

tree plotter, diagrammer, compactor, rule frequency counter, pretty printer, and a Pascal tree

transformation program have already been written using this facility.

I
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Since the editor constructs a parse tree, it is a simple matter to make this tree available for

additional analysis by other programs. These programs, using pre-defined library routines, walk

the parse tree collecting data. They can modify some fields in the tree directly, and can

transform the structure of the tree by writing a text file to be passed back to the editor to be

parsed and inserted in place of some portion of the existing tree. They can also produce editor

command files, to be executed once the filter process terminates. The last command in this file

can invoke the filter process again, resulting in effect in a co-routine. The editor provides both

user-defined command sequences and command files to facilitate the use of these programs.

The SAGA editor contains a filter command which takes the name of the filter process as

an argument, and arranges to execute the program as a sub-process to the editor. This com-

mand automatically supplies the name of the parse tree directory as the first argument to the

program, and optionally supplies a parse tree node number as a second argument if a sub-tree is

selected by the user to be passed to the filter command. Any other arguments given to the filter

command are passed along to the filter process after these initial arguments. Thus the filter pro-

cess is executed with the following arguments:

_filtername> _parse-tree-directory> [_tree-node>] [_args to filter cmd>]

At each node in the tree, the appropriate library routine can be used to retrieve the fields of

interest in the node. Should it be desired to make modifications to the tree, two approaches may

be used. To transform the tree, a text file should be created into which the new text to be insert-

ed into the tree is placed. If the filter command in the editor is placed into a user-defined com-

mand sequence, then additional commands in this sequence can cause the deletion of the sub-tree

which was passed to the filter followed by the insertion of the new text from this file.

For more complex modifications, the filter process can created a command file which con-

tains a com_:aation of editor commands and input data. The user-defined command sequence
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which executes the filter command can then invoke the editor's ezec command on the file pro-

duced by the filter process; commands in this file will then guide the modifications to be made.

@.4. Demand-Paged Data Structures

Pascal provides no mechanism to support random access to files. Since parse trees can

grow large and the editor would like to be able to run with only a small portion of the tree

memory-resident, a module was written which permits a program written in Berkeley Pascal to

randomly access records in a file. The paging routine module provides an interface by which the

records in this file can be accessed and modified. Only a small portion of the file needs to be

memory resident at any time; the package implements a demand-pager to move the data in and

out of memory as required. The programmer specifies a record to be paged and provides a buffer

(an array of records) to contain a portion of the file in memory. The routines in the package can

also be used to define an interface to treat the records as an encapsulated data type, and imple-

ment additional access routines to provide access to the fields in the record in an implementation

independent manner.

The paging system provides access to a potentially large file of records through a possibly

small area of memory available to a program. Conceptually, the file may be thought of as an ar-

ray of records, the first one labeled with index 1, and with no upper bound. As higher and higher

indices are referenced, additional pages are added to the file. The file is limited in size only by

UNIX system imposed restrictions (typically the amount of free space on the file system contain-

ing the file).

Each record in this file can be read or written independently from all others in the file, in

any order whatsoever. The programmer using the paging system simply specifies the index of the

record in the file he wishes to access, and the record will be swapped into memory if not already

I
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present, and made available to him. Figure 6-5 illustrates both the concept and the implementa-

tion scheme used by the routines.

The records to be paged can be any size up to but not greater than the size of the disk page

which is swapped by the operating system. On older systems, this size is typically 512 bytes,

alth()ugh page sizes of 1024, 4096, and 8192 bytes are also common.

Since all disk i/o is performed a page at a time, no record is stored across two pages, since

this doubles the overhead to retrieve the record. So as many records as will fit onto a single page

are stored on that page, and the remaining space is left as a "hole", which is not used by the pag-

ing system.

The data is stored in memory as an array of records. The user's program must contain a

declaration of the record, and a pointer to an array of records to be used as a buffer to contain

the pages of records which will be swapped into and out of memory by the paging system. The

routines use a page table and buffer table to store the information needed to manage the data.

This information is hidden from the user, and it is not necessary to understand these structures

in order to use the paging routines; these structures are shown in Figure 6-5 only for complete-

ness and the interest of the reader.

The cost of these functions is the increased overhead of a procedure call per record refer-

ence. These routines are used by the SAGA language-oriented editor to manage the parse trees

which are constructed during the editing process. This results in faster response time for large

programs since the entire tree does not need to be read into memory.

8.5. Summary

This chapter has covered the modules of the SAGA editor. By parsing the user's text as it

is input, the editor provides additional analysis sooner than previously available, eliminating the
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Figure 0-5: A Demand-Paged File, used for the editor's parse tree and string table. These struc-

tures are paged into memory on demand, permitting the editor to run with only a small portion

of the parse tree memory resident during a editing session. The paging module is available far
use with other Pascal programs, and can be used to support any data structures which can be

stored as an array of records.
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need to run a compiler merely to locate and repair syntax and semantic errors, and reducing the

time from coding to test. By implementing the editor's command interpreter over an incremen-

tal, table-driven, LR(1) parser, it has been possible to retain common text editing commands

while augmenting the user interface with structure-oriented commands which increase the level

of abstraction of the user interface. This permits editing operations to be specified in terms

closer to the problem at hand. Interfaces are provided to language-dependent lexical, syntactic,

and semantic analysis modules, permitting the use of any parser generating system which can

meet the requirements of the interface, and permitting language implementors to use a formal

specification grammar or other notation with which they are familiar.

An extensible command set permits customization of the editor, and allows it to draw on

other tools in the development environment to perform additional analyses and operations for

the user from within the editor. Through the use of filter processes, the editor provides the capa-

bility of performing semantic analysis in a separate process running in parallel with the editor,

which should lessen delays in response time when semantic processing is being performed. The

use of a demand-paged data structure to store the parse tree permits use of the editor with large

programs on systems with limited available memory. In the next chapter, editor generation is

discussed, completing the presentation of the SAGA language--oriented editor.
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CHAPTER 7

EDITOR GENERATION

The SAGA Editor has been designed to be easily retargetable to additional languages.

Most of the editor's modules are language-independent, and can be used intact when an editor is

produced for another language. Only the lexical, syntactic, and semantic analysis modules need

to be altered, and the extent of the alterations is dependent upon the parser-generating system

being used to process the language specification.

The lexical, syntactic, and semantic analysis modules are generated by or written for use

with a specific parser-generator facility. The generator program reads one or more input files

which contain formal descriptions of the language-specific information. This information con-

sists of a formal description of the syntax of the language in the form of a grammar, information

about the lexical representations of the tokens and semantic evaluation information in the form

of executable code fragments or attributed grammars, depending on the parser-generator used.

The parser-generator produces parse tables and associated information which is combined with

the parser-generator dependent library routines and the common editor object code to produce

an editor for a particular language. Figure 7-1 illustrates the generation of a SAGA editor.

7.1. The Mystro Parser-Generator System

The Mystro parser-generatingsystem [Noonan and Collins,84] uses a customized subrou-

tine to perform the lexicalanalysis,a formal BNF-grammar descriptionof the syntax of the
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Figure 7-1: SAGA Editor Generation

language, and code fragments attached to the production rules of the grammar to perform se-

mantic evaluations whenever a reduction by this rule is performed by the parser. The lexical

analysis is accomplished in the tokenize routine which consists of a case statement and associated

subroutines to scan the input buffer and recognize specific tokens, followed by code to construct a

terminal node for this token and append it to a list to be returned to the caller of the routine.

To adapt lexical analysis for another language, this routine can be copied from a file already in
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existence for another language 'and edited to insert or delete cases to/from the case statement to

reflect the different lexical classes that need to be recognized for the new language. All of the

code to scan the input buffer and construct the terminal nodes can be re-used unchanged. If the

lexical structure for the new language is similar to that of a language which has already been

specified for a SAGA editor, then the modifications are straightforward and take little time.

At the syntax analysis level, a formal BNF grammar must be specified which is LR(1); the

challenge to the language implementor is to get the specification into this form, eliminating all

shift/reduce and reduce/reduce conflicts. Unfortunately, at this time the Mystro system does not

permit operator precedence specification and ambiguous grammars, so it is necessary to com-

pletely specify the precedence of operators in the structure of the production rules and hence the

parse tree. For a language like Pascal, this is not too difficult, since there are a limited number of

precedence levels. However, for a language such as C, there are so many precedence levels that

the parse trees become heavy with renaming rules in the sections involving operators and

operands.

The Mystro system will still produce a file of parse tables for the syntax of ambiguous

grammars, though the parser will always default to using the first applicable action which it en-

counters. But because the tables are produced, it is possible to post-process them manually, and

in many cases edit the tables and resolve the conflicts in favor of one or another. In the case of

the Pascal grammar, it is possible to replace the production rules given in Figure 7-2(a) with

those in 7-2(b), run the resulting ambiguous grammar through the parser-generator, and then

edit the resulting tables. The effect is that all renaming rules of the form:

_simple-ezpression> ---, _term> ---, _factor> ---* _id>

disappear from the parse tree and are replaced by:

_ simple-expression > ---, _ id >
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directly. Parse trees produced by editors for both of these grammars were analyzed for produc-

tion rule frequency and tree size and it was found that the trees resulting from the ambiguous

grammar contained 27% fewer nodes, a significant saving in both space and parser processing

time.

The parser-generator takes the code fragments associated with the production rules in the

grammar specification and combines them into a case statement indexed by rule number; this

statement is placed into one of the language-dependent analysis files automatically during parser

generation. The SAGA editor provides support for semantic analysis to be performed either in-

sequence with the parse, or after the syntax analysis has completed. In this latter case, a

separate process can be employed to perform the semantic analysis. The use of a separate pro-

cess is encouraged since the semantic analysis must presently be done with code fragments, but if

the lexical analysis could be made table-driven, then it would be possible to produce a single edi-

tor which loads the lexical and syntax tables at run time, instead of customized editors, instan-
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_simple_ezpre8>--* _simple_ezpres> _add_op.> _term> _ _term>

_ add_op > _ + II-I t or
_terra> ---* _erra> _mult_op> _faetor> lt _faetor>

_mult_op> -"* * 1 /', div I raod I and

_faetor> --* _variable>

(a) Section of original unambiguous grammar

_simple_ezpres>---* _simple_expres> _op> _variable> _ _variable>

cop> _ + ',- ',or ',*',/', div ',rood', and

(b) Equivalent ambiguous grammar, assuming +, - and or

are assigned lower precedence than the remaining operators.

Figure 7-2: A grammar simplification resulting in more efficient parse trees.
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tiated one per language. To produce an editor for a new language, only new tables would need to

be produced; these could be used with an existing editor binary, saving storage space used for the

"editor programs and permitting all SAGA editors to run from a single text image in memory.

The SAGA group has found the Mystro parser-generator to be a stable and reliable system,

and of great use in the development of new SAGA editors. If a future version could contain a

formal specification of lexical classes then the manual code modification of the tokenlzing routine

could be eliminated; if ambiguous grammars with precedence specification of tokens which arise

in ambiguous constructs could be provided, grammars could be specified which produce potential-

ly much more efficient parse trees. These extensions could enhance a very useful system.

7.2. The ILLIPSE Parser-Generating System

Over the past few years, work has been underway at the University of Illinois on an in-

teractive parser-generator system [Mickunas, 81], [Mickunas, 86]. The ILLinois Parsing System

Editor (ILLIPSE) permits a user to build, examine, modify and test context-free grammars in-

teractively. A BNF-style format is used to specify the grammar to be.processed. The user

selects the type of parser to be generated; LR(1), LALR(1), SLR(1), and NSLR(1) 1 parsers are

supported. The user then controls the generation of the sets of items for the parse states of the

parser. States can be generated singly, or all at once. The user then can traverse the state tables

by state number or transition, adding and deleting items, lookaheads, and transitions. Test

strings can be input and parsed to check the behavior of the parser.

ILLIPSE is a very useful tool for the specification of context-free grammars. Ambiguous

grammars can be input, and the ambiguities resolved interactively. Many renaming rules 2 in the

grammar can be eliminated which results in smaller grammars, parse tables, and resulting parse

1Non-deterministic SLR.

2Renaming rules are production rules containing a single non-terminal on the right hand side.

i
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trees than otherwise would be possible if an unambiguous grammar without token precedence

specification needed to be used. This ability can greatly simplify the task of grammar prepara-

tion, and result in production rules which more closely match the constructs in the language.

7.3. The Olorin Parser-Generator

Work has begun in the SAGA group to produce a parser-generator which takes a formal

language specification in an extended BNF syntax, with support for formally specified, incremen-

tally evaluatable semantics [Beshers, 84], [Beshers and Campbell, 85]. A prototype generator is

still in the design and implementation phase, but should be available for testing some time within

the next year.

7.4. Other Parser-Generators

As already mentioned, the SAGA editor can be used with any parser-generating system

which can produce tables for which code can be written to meet the requirements of the lexical,

syntactic, and semantic interfaces discussed in the previous chapter. Other logical generators to

use are the lez and yacc programs available on UNIX systems [Lesk, 75], [Johnson, 75]. These

programs need some modification since they were designed as an encapsulated black-box lexer

and parser, which perform more work than is appropriate when applied to the SAGA editor.

Yacc both performs the syntax analysis and provides parsed output, but the SAGA editor needs

structures which can be incrementally reparsed at a later time; only the syntax tables provided

are usable since the editor produces its own parser output (the parse tree).

7.5. Summary

By designing the editor to be retargetable, the results of the effort that went into producing

a language-oriented editor can be applied more widely. This greatly reduces the time and effort

required to produce an editor for a new language. It produces software modules which may be
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re-used both together and separately, in related and unrelated programs as well.

The editor's modular structure permits, for example, the reuse of only the parser and sub-

ordinate modules in programs which need to manipulate parse trees automatically under pro-

gram control; while such a program could feed a SAGA editor input through a pseudo-teletype

interface, it will be more efficient to produce a single program which can communicate directly

with the tokenize and parse routines. Other modules, such as the demand-pager for. arrays of

records, can find uses in unrelated applications in which a large amount of data can be accessed

non-sequentially and processed in small pieces.

By permitting the interfacing of other parser=-generating systems, the SAGA editor can

take advantage of new systems which come along, and which may provide better support for a

particular language than a generator which is currently in use. The use of modular, re-usable

software enhances the software development environment, adding power and flexibility to the

tasks of efficient software development.
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CHAPTER 8

CONCLUSION

This dissertationhas shown that a language-orientededitorfor context-freelanguages can

be based upon an incrementalLR(1) parserwith incrementalanalysistechniques.The editorhas

been constructedusingthe recognitionapproach,which permits itto retainscommon textediting

commands whileaugmenting them with structure-orientedones. Itcan handle fullprogramming

I

I
I

languages. Itissuperiorto editorsbased on the generatorapproach, which implement subsetsof

fullprogramming languages and provide restrictededitingenvironments, and are unable to pro-

vide many ofthe operationscurrentlyavailableintexteditors.

The editorincorporatesa table-driven,incremental parser. The parser provides an en-

vironment in which syntactic errors are permitted; editing is simplifiedsince structural

modificationswhich can be tediouscan be performed inseveralpieces.The program being edited

can be taken through severalintermediate,incorrectstates.Since the parser permits the editor

to support text-orientedcommands, pre-existingcode fragments in textform can be directlyin-

corporated anywhere in the parse tree;no preprocessingisrequired.

We have presentedour parse treenode structure,which adds attributeswhich are of direct

benefitto an editor. These attributespermit the parse treeto be used directlyby the editor's

command interpreterand displaymodule. This eliminatesthe need to keep an additionaltext

representation,and the additionalcomplexity that would be required to maintain consistency

between the textualand structuralforms of the data. Since a singledata structuresufficesfor
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the parser and editor,no unparser isneeded to retrievethe originalsyntax and formatting infor-

mation.

A new solutionto the handlingofcomments insyntax treeshas been presented,which elim-

inates the restrictionsplaced upon comments by syntax-directedtemplate editors,simplifies

storage and maintenance of comments inthe Parsetree,and supports uniformityof accessby ed-

itorcommands which can referenceboth comments and syntacticallymeaningful tokens in the

parse treeat the same time.

In the parsing algorithm,we have redefinedthe reduce operation,proposing an alternative

which permits the parser to treatnon-terminM and terminal tokens uniformly,permitting the

specificationof non-terminalsin the inputstring.We have combined the parsingactionand goto

functioninto a singleaction. Both of thesemodificationseliminateduplicatecode in the incre-

mental parser,and improve itsefficiency.

Expliciterror handling actionshave been introduced,sincea working editormust be able

to recoverfrom a user'ssyntax errors.The error-recoveryalgorithm handles multiplesyntax er-

rors,and permits editingofthe parsetreeinthe midst of errors.

The editorisscreen-oriented:Itdisplaysthe parse treeterminal nodes in text form, no

non-terminal nodes appear on the screen,so that the programmer need not know the specific

constructionof the production rulesinthe grammar definingthe language in order to be able to

use the editor.A command isprovided to displaythe setof legaltokens which can appear at a

given locationin the tree. This featurecan aid programmers who are learninga new language,

as wellas providediagnosticsupport toaid inthe repairof difficultsyntax errors.

The editorisflexibleand supportsa higher-levelcommand interfacewhich includesboth

structure-orientedcommands and common text editingcommands. This editorcan be used to

develop practicalprograms which incorporatesoftware engineeringprinciplesconcerning the

I
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design and construction of software systems. A prototype editor which employs these algorithms

was implemented beginning in 1981 as a demonstration of the practicality and flexibility of this

approach; this editor has been in experimental use over the past couple of years.

The editor is a part of the SAGA system, which is directed towards experienced program-

mers, who if anything need additional editing flexibility and analysis, and not a tightly con-

strained environment with restrictive editing options.

The editor'smodular structuresupports the reuse of code when constructingeditorsfor

other languages, making the majority of its code language-independent. By basing it upon stan-

dard table-driven LR parser technology, the editor can be used with many of the already existing

parser-generator programs which have been independently developed, improving its applicability.

In summary, the construction of a language-oriented editor based upon the recognition ap-

proach is very flexible and has several advantages:

1) The technique can be applied consistently to the lexical, syntactic, and semantic
components of the language. (Many language-oriented editors based on a genera-

tion approach nevertheless depend upon the recognition of valid primitive expres-

sions of the language.) We believe this consistency simplifies the implementation of

a uniform set of basic editing commands such as insert, delete, move and copy for

the lexical, syntactic and semantic components of the language.

2) The approach permits arbitrary editing operations on the program. Editors that
use the generation approach cannot permit arbitrary changes and often require par-

ticular syntactic transformations to be implemented as special cases.

3) The approach facilitates program maintenance and modification. It is often

simpler to transform an existing program into a desired program if the editing

commands can take a program through a sequence of intermediate invalid forms.

In addition, these invalid programs may be saved between editing sessions. Such

program transformations are difficult to implement using an editor based on the

generator approach.

4) Arbitrary lines of existing program tezt can be inserted anywhere into the text of

a new program. This allows the editor to be used to combine two different versions

of a program in an arbitrary manner to produce a new version.
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5) The design of a facility to produce language-oriented editors is simplified if ezist-
ing compiler generation and parsing techniques and tools can be employed without

major alteration. If standard compiler generation and parsing techniques are used,

then many existing specifications of the lexical, syntactic, and semantic components

of a programming language can be used directly by the facility to produce

corresponding language-oriented editors.

The editor runs on a DEC VAX 11/780 under the 4.2BSD UNIX operating system. Editors

have been created for Pascal, C, Ada, and FP. Most experimentation has involved the Pascal ed-

itor, and we have found that enough additional processing is performed that a fast or dedicated

processor is necessary to provide reasonable response times, but that with such a processor, the

apparent response time perceived by the user is as good as with a text editor. The parse trees for

Pascal, using a non-ambiguous grammar, take about ten times as much space as the equivalent

text representation. Using an ambiguous grammar, and eliminating renaming rules in expres-

sions, we have found that we can reduce the size of the tree to seven times that required for the

text. Additional semantic information will increase this size somewhat.

Since a dedicated processor is desirable, the editor has been ported to a workstation en-

vironment. It runs on a Sun workstation under the 4.2BSD UNIX operating system. We have

found that a workstation provides an ideal environment for such an editor, since the processing is

adequate for its needs and the large amount of available memory permits efficient editing of large

programs. Response time is adequate, and the multi-process window environment provided by

the system software promotes good interaction between the editor and other tools used in a

software development environment.

Looking beyond the editor into the development environment in which it beginning to be

run, the parse trees produced by the editor can serve as a uniform data structure for many other

tools. Additional programs can easily be written to perform additional analyses or operations on

these parse trees. Editors can be produced for specification and design languages, and tools writ-
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ten to transform parse treesproduced by one levelintoa form suitableforthe next. Applied in

an integratedmodular environment, the editorcan take advantage of dependency informationto

generate displays,noting the interrelationshipsamong components in a system under develop-

ment; researchintosuch an environment has been performed [Kirsliset al.,85],and iscontinuing

[Terwilligerand Campbell, 86].

The editorhas alsobeen used to support the researchin severalMaster's Theses, one cover-

ing analysisofchanges tosemantic scopes[Badger,84],another implementing a symbol tablefor

use with the editor[Richards,84],and a thirdinterfacingthe editor'sparse treeto a code genera-

tor [Kimball,85]. Ithas been used to support the development of softwaretools,written as class

projectsfor softwareengineeringclassesofferedby the Department of Computer Science at the

Universityof Illinois.Among the projectswere a treetransformationtoolfor Pascal and a pro-

gram slicerfor data flow analysis.The editoris being extended to include semantic analysis

[Beshers,84],a table driven lexicalanalysisbased on lez,and a table-drivencommand inter-

preterfortheeditorthat willpermit formal specificationof the editor'scommand language.

The researchinto an editorbased on the recognitionapproach has shown thisapproach to

be feasible,and through our initialexperiments with it,we believethat the prototype editorim-

plemented with thisapproach isrefinableintoa practicaltoolwhich willbettersupport program-

mers and enhance the softwaredevelopment process.
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APPENDIX A

LALR(I) GRAMMARS

The LALR(1) grammars used to produce SAGA editors for the Ada, FP, and Pascal pro-

gramming languages are collected here. The grammars are presented as they appear in the list-

ing file produced by the Mystro parser-generator. Some additional statistics about the parser

generated by Mystro are also presented.

The grammar for Ada [ARM, 83] is based upon [WethereU, 81], with some corrections. We

have not yet tested our editor against the validation suite supplied by the Ada Joint Program

Office, but we have run numerous tests, all of which the grammar has successfully passed. The

grammar for the Functional Programming Language [Backus, 78] is based upon the 4.2BSD

UNIX implementation [Baden, 83]. The Pascal grammar is based upon the description in [Jensen

and Wirth, 74] and revised to include specific constructs which are permitted by the Berkeley 4.2

Pascal compiler.

For lexical analysis, the Mystro parser-generator requires Pascal code fragments to be writ-

ten which recognize the generic classes of the terminal tokens of the language. (The reserved

words, operators, and punctuation are collected and put into a table by the parser-generator.)

These fragments are included in a lexical analysis module. Since the lexical classes of each of

these languages are readily available in user's manuals for the languages, the code fragments giv-

ing the lexical specifications have been omitted here to conserve space. In the grammars present-

ed here, these generic lexical classes are represented by non-terminal tokens of the form
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<class...>, which appear on the right hand sides of productions and have no left hand side

definition.

Mystro permits Pascal code fragments which perform semantic actions to accompany the

production rules of the grammar. These fragments are collected into a case statement which is

indexed by the production rule number. This case statement is included in the SAGA editor, and

is executed each time a reduction is performed during the parse. No semantic actions are shown

with the grammars presented here.

The binary parse tables for Ada take about 20k bytes of storage; for FP, about 4k bytes;

and for Pascal, about 8k bytes. These figures include storage for the text names of the non-

terminal tokens in the grammar.

When a grammar is analyzed, Mystro produces some additional statistics about the parser.

These statistics are presented below, followed by the three grammars.

Ada Parser Statistics

A total of 432 rules containing 292 symbols were read from "Ada.g."

470 states and 10014 items have been constructed. Compute slr(1) follow set.

15 collisions are not slr(1)-resolvable, but all states are at least lair(l).

6470 actions constructed for the actions array.

FP Parser Statistics

A total of 100 rules containing 97 symbols were read from "FP.g."

31 states and 1092 items have been constructed. Compute sir(l) follow set.

1 collision is not slr(1)-resolvable, but all states are at least lair(l).

1029 actions constructed for the actions array.

Pascal Parser Statistics

A total of 217 rules containing 166 symbols were read from "Pascal.g."

209 states and 2537 items have been constructed. Compute sir(l) follow set.

3 collisions are not slr(1)-resolvable, but all states are at least lair(l).

1929 actions constructed for the actions array.
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Mystro Translator Wrltln$ System

Ada grammar

Version 7.0, June 1983

Page 1

Input grammar. Grammar option. Default: on

The goal symbol <system_goal_symbol> Is found In rule 1.

[
[ 2] <compllatlon_eof>

[ 3] <compllatlon_eof>

[ 4] <compllatlon>

[ 5] <compllatlon>

[ 6] <compllatlon_unlt>

[ 7] <compllatlon_unlt>

[ 8] <compllatlon_unlt>

[ 9] <compllatlon_unlt>

[ 10] <compllatlon_unlt>

[ 11] <context_spec>
[ 12] <with use llst>

[ 13] <with use llst>

[ 14] <with use llst>

[ 15] <with use llst>

[ 16] <wlth-clause>

[ 17] <unit na_e llst>

[ 18] <unit naJne llst>

[ 19] <pragma>

[ 20] <pragma>
[ 21] <use clause>

[ 22] <pkg_name_llst>

[ 23] <pkg_name_llst>

[ 24] <subpgm decl>

[ 28] <subpgm_decl>

[ 26] <subpsm_decl>

[ 27] <subpgm_spec>

[ 28] <subpgm_spec>
[ 29] <subpgm_spec>

[ 30] <subpgm_spec>

1] <system_goal_symbol> ::= <compllatlon_eof>

[ 31] <designator>

[ 32] <deslgnator>

[ 33] <frml_part>

[ 34] <parm_decl_llst>

[ 35] <parm_decl_llst>

[ 36] <parm_decl>

[ 37] <parm_decl>

[ 38] <mode>

[ 39] <mode>

[ 40] <mode>

[ 41] <mode>

[ 42] <subpgm_body>

::= <compilation> <eof>

::= <eof>

::= <compilation_unit>

::= <compilation> <compllatlon_unlt>

::= <context_spec> <subpgm_decl>

::= <context_spec> <subpgm_body>

::= <context_spec> <pkg_decl>

::= <context_spec> <pkg_body>

::= <context_spec> <subunlt>
::= <with use llst>

::= <wlth use llst> <wlth clause>

::= <wlth use list> <wlth clause> <use clause>

_ _ g_ -::= <with use llst> <pra a>
::= wlth _unl_ name 11st> ;

::= <unit name>

::= <unlt name llst> , <unlt name>

::= pragm& <Identifier> ;

::= pragma <ldentlfler> <arg_llst> ;

::= use <pkg_name_llst> ;

::= <pkg_name>

::= <pkg_name_llst> o <pkg_name>

::= <subpgm_spec> ;

::= <gnrc_subpgm_decl>

::= <gnrc_subpgm_lnst>

::= procedure <Identifier>

::= procedure <ldentlfler> <frml part>

::= function <designator> return <subtype_lnd>

::= functlon <designator> <frml part> return

<subtype_lnd>
::= <Identifier>

::= <op_symbol>

::= ( <parm_decl_llst> )

::= <parm_decl>

::= <parm_decl_llst> ; <parm_decl>

::= <Identifier_list> : <mode> <subtype_lnd>

::= <Identifier_list> : <mode> <subtype_lnd> :=
<expr>

::=

::= In

::= OUt

::= In out

::= <subpgm_spec> ls <decl_part> begln

<seq_of stmts> <excepts_opt> end

<designator_opt> ;
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Mystro Translator Writing System

Ada grammar

Version 7.0, June 1983

Page 2

[ 43] <excepts_opt>

[ 44] <excepts_opt>

[ 45] <except_hand list>

[ 46] <except hand_list>

[ 47] <designator_opt>

[ 48] <designator_opt>

[ 49] <pkg_decl>

[ 50] <pkg_decl>

[ 51] <pkg_de¢l>

[ 52] <pkg_spec>

[ 53] <pkg_spec>

[ 54] <pkg_body>

[ 55] <pkg_body>

[ 56] <decl item list>

[ 57] <dec1 item list>

[ 58] <prlvate_part_opt>

[ 59] <prlvate_part_opt>

[ 60] <repr_spec_list>

[ 61] <repr spec_list>

[ 62] <repr_spec_llst>

::=

::= exception <except_hand_llst>

::= <except_handler>

::= <except_hand_list> <except_handler>
::=

::= <designator>

::= <pkg_spec> ;

::= <gnrc pkg dec1>

::= <gnrc_pkg_inst>

::= package <ldentlfler> ls <dec1 Item list>

<private_part_opt> end

::= package <identlfler> is <decl item llst>

<private_part_opt> end <ldentlfler_

::= package body <identifier> Is <decl part>

<pkg_body_part_opt> end ;

::= package body <identifier> is <decl_part>

<pkg_body_part_opt> end <ldentlfler> ;
::=

::= <decl item> <decl item list>

::=

::= private <decl item list>

::= <repr_spec_list> <pr&gma>

::= <repr_spec_llst> <repr_spec>
::=

[ 63] <pkg_body_part_opt> ::=

[ 64] <pkg_body_part_opt>
[ 65] <subunlt>

[ 66] <body_stub>

[ 67] <body_stub>

[ 68] <body_stub>

[ 69] <decl_part>

[ 70] <decl_part>

[ 71] <decl_part>
[ 72] <dec1 item>

[ 73] <dec1 ltem>

[ 74] <decl item>

[ 75] <decl-item>

[ 76] <pgm comp>

[ 77] <pgm comp>

[ 78] <body>

[ 79] <body>

[ 80] <body>
[ 81] <task decl>

[ 82] <task_spec>

[ 83] <task_spec>

[ 84] <task_spec>

[ 85] <task_spec>

[ 86] <task_spec_part>

[ 87] <task_spec_part>

::= begin <seq_of_stmts> <excepts_opt>
::= separate ( <unit_name> ) <body>

::= <subpgm_spec> is separate ;
::= package body <identifier> ls separate ;

::= task body <identifier> 1s separate ;
,--

::= <decl_part> <decl_ltem>

::= <decl_part> <pgm_comp>
::= <decl>

::= <repr_spec>
::= <use clause>

::= <pragm&>

::= <body>

::= <body_stub>

::= <subpgm_body>

::= <pkg_body>

::= <task_body>

::= <task spec>
::= task <identifier> ;

::= task type <identlfler> ;

::= task <identifier> <task_spec_part> ;

::= task type <identifier> <task_spec_part> ;

::= is <entry_decl_list> <repr spec_list> end

::= Is <entry_decl_llst> <repr_spec_llst> end
<identifier>

i
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[ 88] <entry_decl_llst>

[ 89] <entry_decl_llst>

[ 90] <task_body>

[ 91] <task_body>

[ 92] <dec1>

[ 93] <decl>

[ 94] <dec1>

[ 95] <dec1>

[ 98] <dec1>

[ 97] <dec1>

[ 98] <dec1>

[ 99] <dec1>

[100] <dec1>

[101] <object_dec1>

[102] <object_dec1>

[103] <object_dec1>

[104] <object_dec1>

[105] <Inlt_opt>

[106] <Inlt_opt>

[107] <number dec1>

[108] <identifier list>
w

[109] <identifier llst>
m

[110] <type_dec1>

[111] <type_dec1>

[112] <dlscr_part_opt>

[113] <dlscr_part_opt>

[114] <type_def>

[115] <type_def>

[118] <type_def>

[117] <type_def>

[118] <type_def>

[119] <type_def>

[120] <type_def>

[121] <type_def>

[122] <subtype_dec1>

[123] <subtype_Ind>

[124] <subtype Ind>

[125] <subtype Ind>

[126] <derlved_type def>

[127] <range_constr>

[128] <range>

[129] <enum_type_def>

[130] <enum llteral llst>

::=

::= <entry_decl_llst> <entry_decl>

::= task body <identifier> Is <decl_part> begln

<seq_of_stmts> <excepts_opt> end ;

::= task body <identifier> Is <decl_part> begln

<seq of stmts> <excepts_opt> end <Identlfler> ;

::= <object dec1>

::= <type dec1>

::= <subpgm_decl>

::= <task decl>

::= <renamlng decl>

::= <number decl>

::= <subtype_dec1>

::= <pkg dec1>

: := <except_decl>

::= <Identlfler 11st> : <subtype_Ind> <Inlt_opt> ;

::= <Identlfler_llst> : <arr&y_type_def> <Inlt_opt>

::= <Identlfler_llst> : constant <subtype_Ind>

<Inlt_opt> ;

::= <identlfler_llst> : constant <array_type_def>

<lnlt_opt> ;
::=

:.-.....- <expr>

::= <ldentlfler_llst> : constant := <llteral_expr>

::= <Identlfler>

::= <identifier llst> , <identifier>

::= type <ldentlfler> <dlscr_p&rt opt> Is

<type_def> ;

::= <Incompl_type_decl>
::=

::= <dlscr_part>

::= <enum_type_def>

::= <real_type_def>

::= <record_type_def>

::= <derlved_type_def>

::= <Integer_type_def>

::= <array_type_def>

::= <access_type_def>

::= <prlvate_type_def>

::= subtype <Identlfler> ls <subtype_lnd> ;

: := <name>

::= <name> <range_constr>

::= <name> <accur&cy_constr>

::= new <subtype_Ind>

::= range <range>

::= <slmple_expr> .. <slmple_expr>
::= ( <enum 11ter&1 llst> )

::= <enum 11teral> -

I
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[131] <enum llteral list>

[132] <enum-llteral>

[133] <enum llteral>

[134] <Integer_type_de f>

[135] <real_type_def >

[136] <accuracy_constr>

[137] <accuracy_constr>

[138] <float_pt_constr>

[189] <float_pt_constr>

[140] <flxed pt_constr>

[141] <fixed_pt_constr>

[142] <array_type_def >

[143] <array_type def>
[144] <index llst>

[145] <index 11st>

[148] <index>

[147] <dlscrete_range>

[148] <dlscrete_range>

[149] <discrete_range>

[150] <record_tTpe_def >

[151] <comp_llst>

[152] <comp_llst>

[153] <comp_llst>

[154] <comp_decl_list>

[155] <comp decl_llst>

[156] <comp_decl>

[157] <comp_decl>

[158] <dlscr_part>

[159] <dlscr decl llst>

[160] <dlscr decl list>

[161] <dlscr--decl_

[169-] <varlant_part>
[183] <varlant eli llst>

[184] <varlant eli llst>

[185] <choice llst>

[188] <cholce-llst>

[187] <cholce_

[168] <cholce>

[16g] <cholce>

[170] <choice>

[171] <access_type_def>

[172] <lncompl_type_decl>

[173] <lncompl_type_decl>

[174] <expr>

[175] <expr>

[178] <expr>

[177] <expr>

[178] <expr>

::= <enum literal list> , <enum literal>
::= <Iden_Ifler> -

::= <character>

::= <range_constr>

::= <accuracy_constr>

::= <float pt constr>

::= <flxed_pt_constr>

::= dlglts <statlc_slmple_expr>

::= digits <st&tlc_slmple_expr> <range_constr>

::= delta <statlc_slmple_expr>

::= delta <statlc_slmple_expr> <range_constr>

::= array ( <index 11st> ) of <comp_subtype_Ind>

::= array <arg_llst> of <comp_subtype_Ind>
::= <index>

::= <Index llst> , <index>

::= <name> range <>
::= <name>

::= <naJne> <range_constr>

::= <range>

::= record <comp_llst> end record

::= <comp_decl llst>

::= <compdecl_llst> <varlant_part>
::= null ;

::=

::= <comp decl_llst> <comp_decl>

::= <Identlfler_llst> : <subtTpe_Ind> <Inlt_opt> ;

::= <Identlfier llst> : <array type_def> <Inlt_opt>

::= ( <dlscr dec1 llst> )

::= <dlscr decl>

::= <dlscr decl llst> ; <dlscr decl>

::= <Identlfler_llst> : <subtype_Ind> <Inlt_opt>

::= case <name> is <variant elt llst> end case ;

::=

::= <variant elt llst> when <choice list> =>

<comp list>
::= <choice>

::= <choice list> ! <cholce>

::= <slmple_expr>

::= <name> <range_constr>

::= <range>
::= others

::= access <subtype ind>

::= type <identifier> ;

::= type <Identlfler> <dlscr_part> ;
::= <rel>

::= <rel and llst>

::= <re1 or list>

::= <rel xor llst>

::= <rel and then llst>

I
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[179] <expr>

[180] <expr>
[181] <rel and list>

[182] <rel_and list>
[183] <rel or llst>

[184] <re1 or llst>

[185] <re1 xor llst>

[186] <re1 xor list>

[187] <rel and then llst>

[188] <rel and then llst>

C189] <rel-or else _Ist>

[190] <rel or else list>
[191] <rel>

[192] <rel>

[193] <rel>

C194] <rel>

[195] <rel>

[196] <simple_expr_list>

[197] <simple_expr_list>

[198] <slmple_expr>

[199] <slmple_expr>

[200] <term llst>

[201] <term llst>

C202] <term_

[203] <factor llst>

[204] <factor list>

[205] <factor_

[206] <prlmary_llst>

[207] <primary_list>

[208] <primary>

[209] <primary>

[210] <primary>

[211] <primary>

[212] <primary>

[213] <rel_op>

[214] <rel_op>

[215] <rel_op>

[216] <rel_op>

[217] <rel_op>

[218] <rel_op>

[219] <add_op>

[220] <add_op>

[221] <add_op>

[222] <unary_op>

[223] <unary_op>

[224] <unary_op>

[225] <mult_op>

[226] <mult_op>

[227] <mult_op>

[228] <mult_op>

::= <rel or else list>

::= <classplace>
::= <rel> and <rel>

::= <rel and list> and <rel>

::= <rel_ or <rel>

::= <tel or list> or <tel>

::= <rel> xor <rel>

::= <tel xor list> xor <rel>

::= <rel_ and then <rel>

::= <rel and then llst> and then <rel>

::= <rel_ or else <rel>

::= <rel or else llst> or else <rel>

::= <simple_expr_llst>

::= <simple_expr> In <subtype_Ind>

::= <slmple_expr> in <range>

::= <slmple_expr> not in <subtype_Ind>

::= <slmple_expr> not In <range>

::= <simple_expr>

::= <simple_expr_llst> <rel_op> <slmple_expr>
::= <term list>

::= <unary_op> <term_list>
::= <term>

::= <term_list> <add_op> <term>
::= <factor list>

::= <factor_

::= <factor_list> <mult_op> <factor>

::= <primary> <prlmary_llst>

::= ** <primary>

::=

::= <literal>

::= <aggregate>

::= <na_e>

::= <allocator>

::= <qualifled_expr>
::= =

::= /=

::= <

::= <=

::= >

::= >=

::= +

::= -

::=

::= +

::= -

::= not

::= ,

::= /

::= mod

: := rein

i
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[229] <name>

[230] <name>

[231] <name>

[232] <name>

[233] <name>

[234] <selected_comp>

[235] <selected_comp>

[236] <selected_comp>
[237] <attr>

[238] <attr>

[239] <attr>

[240] <attr>

[241] <literal>

[242] <literal>
[243] <literal>

[244] <llteral>

[245] <aggregate>

[246] <comp_assoc_llst>

[247] <comp_assoc_llst>

[248] <comp_assoc>

[249] <comp_assoc>

[250] <quallf led_expr>

[251] <allocator>

[252] <allocator>

[253] <seq of_stmts>

[254] <seq of_stmts>
[255] <strut>

[256] <strut>

[287] <strut>

[258] <stmt>

[259] <strut>

[260] <strut>

[261] <label 11st>

[262] <label llst>

[283] <slmple_stmt>

[264] <slmple_stmt>

[265] <slmpl e_stmt>

[266] <slmple_stmt>

[267] <simple_stmt>

[268] <slmple_stmt>

[269] <slmple_stmt>

[270] <slmple_stmt>

[271] <simple_strut>

[272] <slmple_stmt>

[273] <compound_strut>

[274] <compound_strut>

[275] <compound_strut>

[276] <compound_strut>

[277] <compound_strut>

[278] <compound_stmt>

::= <identifier>

::= <name> <arE_list>

::= <selected_comp>
::= <attr>

::= <op_symbol>
::= <name> . <identifier>

::= <name> . all

::= <name> . <op_symbol>
::= <name> " <identifier>

::= <name> " delta

::= <name> ° digits

::= <name> ' range
::= <numeric literal>

::= <string>
::= <character>

::= null

::= ( <comp_assoc_list> )

::= <comp_assoc>

::= <comp_assoc_llst> , <comp_usoc>
::= <expr>

::= <choice llst> => <expr>

::= <name> ° <aggregate>
::= new <name>

::= new <quallfled expr>
::= <stmt>

::= <seq_of_stmts> <stmt>

::= <slmple_stmt>

::= <compound_stmt>

::= <pragma>

::= <label_llst> <simple_stmt>

::= <label llst> <compound_stmt>
:'-.-<classplace>
::= <label>

::= <label list> <label>

::= <null stmt>

::= <asslgn_stmt>
::= <return stmt>

::= <proc or entry call>

::= <delay_stmt>
::= <raise stmt>

::= <exit stmt>

::= <goto_stmt>
::= <abort stmt>

::= <code stmt>

::= <if stmt>

::= <loop_stmt>

::= <accept stmt>
::: <case stmt>

::= <block>

::= <select stmt>
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[279] <label>

[280] <null stmt>

[281] <asslgn_stmt>

[282] <If stmt>

[283] <If stmt>

[284] <If stmt>

[285] <If stmt>

[286] <elslf llst>

[287] <elslf llst>

[288] <cond>

[28g] <case stmt>

[290] <when list>

[291] <when list>

[292] <loop_stmt>

[293] <loop_stmt>

[294] <loop_stmt>

[295] <loop_stmt>

[298] <basic_loop>
[297] <Iteration clause>

[298] <Iteration clause>

[299] <iteration clause>

[300] <loop_parm_

[301] <block>

[302] <block>

[303] <block>

[304] <block>

[305] <exlt stmt>

[306] <exlt stmt>

[307] <exit stmt>

[308] <exit stmt>

[300] <return stmt>

[310] <return stmt>

[311] <goto_s_mt>

::= << <ldentlfler> >>

::= nell ;

::= <name> := <expr> ;

::= If <cond> then <seq_of_stmts> <elslf_llst> end
If ;

::= If <cond> then <seq._of_etmts> end If ;
::= If <cond> then <seq..of_stmts> <elslf_llst> else

<seq_of stmts> end If ;

::= If <cond> then <seq_of_stmts> else
<seq_of_stmts> end If ;

::= elslf <cond> then <seq_of_stmts>

::= <elslf llst> elslf <cond> then <seq_of_stmts>
::= <boolean_expr>

::= case <expr> ls <when_llst> end case ;
::=

::= <when llst> when <choice list> =>

<seq_of_stmts>

::= <basic_loop> ;

::= <Iteration clause> <baslc loop> ;

::= <Identifier> : <basic_loop> <Identifier> ;

::= <Identifier> : <Iteration_clause> <basic_loop>
<Identifier> ;

::= loop <se_ of stmts> end loop

::= for <loop_parm> In <discrete_range>

::= for <loop_2arm> In reverse <discrete_range>
::= whlle <cond>

::= <identifier>

::= begln <seq_of_stmts> <excepts_opt> end ;

::= declare <decl_part> begln <seq of stmts>

<excepts_opt> end ;

::= <Identifier> : begin <seq of stmts>

<excepts_opt> end <identifier> ;

::= <identifier> : declare <decl_part> begin

<seq of_stmts> <excepts_opt> end <identifier> ;
::= exlt ;

::= exlt <loop_name> ;
::= exlt when <cond> ;

::= exlt <loop_name> when <cond> ;

::= return ;

::= return <expr> ;

::= goto <label name> ;

[312] <proc or entry_call> ::= <name> ;

[313] <entry_decl>

[314] <entry_dec1>

[315] <entry_decl>

[316] <entry_dec1>

[317] <accept_stmt>

[318] <accept stmt>

[31g] <accept_stmt>

::= entry <ldentlfler> ;

::= entry <Identifier> ( <dlscrete_range> ) ;

::= entry <identifier> <frml part> ;

::= entry <Identlfler> ( <dlscrete_range> )

<frml_part> ;

::= accept <entry_name> ;

::= accept <entry_name> do <seq_of_stmts> end ;

::= accept <entry_name> do <seq of stmts> end

I
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[320] <entry_name>

[321] <entry_name>

[322] <entry_name>

[323] <entry_name>

[324] <entry_Index>

[325] <delay_stmt>

[326] <select stmt>

[327] <select strut>

[328] <select stmt>

[329] <selective walt>

[330] <when_part_opt>

[331] <when_part_opt>

[332] <or_part_list>

[333] <or_part_llst>

[334] <or_part>

[335] <or_part>

[335] <else_part_opt>

[337] <else_part_opt>

[338] <select alt>

[339] <select alt>

[340] <select alt>

[341] <seq_of_stmts_opt>

[342] <seq of stmts_opt>

[343] <cond_entry_ca11>

[344] <cond_entry_call>

[345] <timed_entry_call>

[345] <abort stmt>

[347] <task name 11st>

[348] <task name llst>

[340] <ralse simS>

[350] <raise stmt>

[351] <prlva_e_type_def>

[352] <prlvate_type_def>

[383] <renamlng_decl>

[354] <renamlng_decl>

[355] <renamlng_decl>

[356] <renamlng_decl>

[357] <renaming_dec1>

[358] <except decl>

[359] <except handler>

<Identlfler> ;

::= <identifier> ( <entry_Index> ) <frml_part>

::= <Identifier> <frml part>

::= <ldentlfler> ( <entry_Index> )

::= <Identlfler>

::= <expr>

::= delay <slmple_expr> ;

::= <selective wait>

::= <cond entry call>

::= <tlmed_entry_call>

::= select <when_part_opt> <select_alt>

<or_part_list> <else_part_opt> end select ;

::=

::= when <cond> =>

::=

::= <or_part_list> <or part>

::= or <select alt>

::= or when <cond> => <select alt>

::=

::= else <seq_of_stmts>

::= <accept_stmt> <seq_of_stmts_opt>

::= <delay_stmt> <seq_of_stmts_opt>

::= termlnate ;

::=

::= <seq_of_stmts>

::= select <proc or entry_call> else <seq of_stmts>

end select ;

::= select <proc or entry_call> <seq_of_stmts> else

<seq_of_stmts> end select ;

::= select <proc or entry_call> <seq_of_stmts_opt>

or <delay_stmt> <seq_of_stmts_opt> end select ;

::= abort <task name llst> ;

::= <task name>

::= <task name llst> , <task name>

::= ralse ;

::= raise <except_name> ;

::= private

::= 11mlted private

::= <identifier llst> : <name> renames <name> ;

::= <Identlfler llst> : exception renames <name> ;

::= package <Identifler> renames <name> ;
::= task <ldentlfler> renames <name> ;

::= <subpgm_spec> renames <name> ;

::= <Identlfler 11st> : exception ;

::= when <except cholce llst> => <seq_of stmts>

[360] <except_choice_list> ::= <except_choice>

[361] <except_choice list> ::= <except_choice_list> ! <except_choice>

[362] <except_cholce_ ::= <except_name>

[363] <except_choice> ::= others

[364] <gnrc_subpgm_decl> ::= <gnrc_part> <subpgm_spec> ;
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[365] <gnrc_pkg_decl> ::= <gnrc_part> <pkg_spec> ;
[386] <gnrc part> ::= generic

[367] <gnrc_part> ::= generlc <gnrc_frml_parm_ist>

[368] <gnrc_frm!_parm_lst> ::= <gnrc_frml_parm>

[369] <gnrc_frml_parm_let> ::= <gnrc_frml_parmlst> <gnrc_frml_parm>

[370] <gnrc_frml_parm>

[371] <gnrc_frml_parm>

[372] <gnrc_frml_parm>

[373] <gnrc_frmlparm>

[374] <gnrc_frml_parm>

[375] <gnrc_frmlparm>

[376] <gnrc_type_def>

[377] <gnrc type def>

[378] <gnrc_type_def>

[370] <gnrc_type_def>

[380] <gnrc_type def>

[381] <gnrc_type_def>

[382] <gnrc_type_def>
[383] <gnrc_subpgm_lnst>

[384] <gnrc_subpgm_Inst>

[385] <gnrc_pkg_Inst>

[386] <gnrc_lnst>

[387] <gnrc_Inst>

[388] <repr_spec>

[389] <repr_spec>

[390] <repr_spec>

[301] <len or enum spec>

[302] <record_type_repr>

[393] <align_clause_opt>

[394] <allgn_clause_opt>

[398] <1oc clause 11st>

[398] <1oc clause 11st>

[307] <lot;

[398] <align clause>

[399] <addr_spec>
[400] <code etmt>

[4Ol] <arg__Ist>
[402] <arg_part>

[403] <arg_part>

[404] <arg_ltem>
[405] <arg_ltem>

[408] <arg_ltem>

[407] <arg_ltem>

[408] <arg_stroke_11st>

[409] <arg_strokellst>
[410] <pkg_name>
[411] <unlt name>

[412] <loop name>

::= <parm_decl> ;

::= type <identifier> Is <gnrc_type_def> ;

::= type <identifier> <dlscr_part> ls
<gnrc_type_def> ;

::= with <subpgm_spec> ;

::= wlth <subpgm_spec> ls <name> ;
::= with <subpgm_spec> ls <> ;
::= C <> )
::= range 4>
::= delta <>

::= dlglts <>

::= <array_type_def>

::= <access_type_def>

::= <prlvate_type_def>

::= <subpgm_spec> Is <gnrc_Inst> ;

::= function <designator> Is <gnrc_Inst> ;

::= package <identifier> Is <gnrc_inst> ;

::= new <designator>

::= new <designator> <arg_llst>

::= <len or enum_spec>

::= <record_type_repr>

::= <addr_spec>

::= for <name> use <expr> ;

::= for <name> use record <allgn clause_opt>
<loc clause llst> end record ;

::=

::= <allgn_clause> ;
::=

::= <loc_clause_llst> <comp_name> <loc>;

::= at <statlc_slmple_expr> range <range>

::= at mod <statlc_slmple_expr>

::= for <name> use at <statlc_slmple_expr> ;

::= <quallfled_expr> ;

::= ( <arg_part> )

::= <arg_Item>

::= <arg_part> , <arg_Item>

::= <expr>

::= <name> <range_constr>

::= <range>

::= <arg_stroke llst> => <expr>
::= <name>

::= <name> ! <arg_stroke_list>
::= <name>

::= <name>

::= <name>

i
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[413] <label name>

[414] <task name>

[415] <except_name>

[416] <comp_name>

[417] <llteral_expr>

[418] <boolean_expr>

::= <name>

::= <name>

::= <name>

::= <name>

::= <expr>

::= <expr>

[419] <static_slmple_expr> ::= <simple_expr>

[420] <comp_subtype_Ind>
[421] <numeric literal>

[422] <numeric literal>

[423] <numeric literal>

[424] <numeric literal>

[425] <Identlfier>

[426] <character>

[427] <string>

[428] <op_symbol>

[429] <real>

[430] <integer>

[431] <based real>

[432] <based lnt>

::= <subtype_Ind>

:'= <real>

:.= <integer>

:.= <based real>

:.= <based Int>

:.= <classld>

:-= <classchar>

:'= <classstr>

:'= <classop>

:.= <classreal>

::= <classint>

::= <classbreal>

::= <classblnt>
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List of tokens and their token numbers.
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Tokens optlon. Default: on

The reserved words and their token numbers are:

1 abort 2 accept 3 access

4 all 5 and 6 array

7 at 8 begln 9 body
I0 case 11 constant 12 declare

13 delay 14 delta 15 dlglts
16 do 17 else 18 elslf

19 end 20 entry 21 exception
22 exit 23 for 24 function

25 generic 26 goto 27 if

28 In 29 is 30 limited

31 loop 32 Nod 33 new
34 not 35 null 36 of

37 or 38 others 39 out

40 package 41 pragma 42 private

43 procedure 44 raise 45 range
46 record 47 rem 48 renames

49 return 50 reverse 51 select

52 separate 53 subtype 54 task

55 terminate 56 then 57 type
58 use 59 when 60 while

61 wlth 62 xor

The angle-bracketed terminals and thelr token numbers are:

63 <classblnt>

66 <classld>

69 <classplace>
72 <eof>

64 <classbreal>

67 <classlnt>

70 <classreal>

65 <classchar>

68 <classop>
71 <classstr>

The special symbols and their token numbers are:

73 ! 74 • 75 "

76 ( 77 ) 78 *

79 ** 80 + 81 ,

82 - 83 84 ..

85 / 86 /= 87 :

88 := 89 ; 90 <
91 << 92 <= 93 <>

94 = 95 => 96 >

97 >= 98 >>

I
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The non-terminals and their token numbers are:

g9 <abort stmt>
m

102 <accuracy_constr>
108 <a88resate>
108 <allocator>

111 <arg_part>

114 <asslgn_stmt>
117 <based real>

120 <body>
123 <case stmt>

126 <cholce llst>

129 <comp_assoc_llst>

132 <comp_llst>

135 <compllatlon>

138 <compound stmt>

141 <context_spec>
144 <decl ltem llst>

147 <derl_ed_type_def>

150 <dlscr decl>

153 <dlscr_part_opt>
156 <elslf llst>

159 <entry_Index>
162 <enum llteral llst>

165 <except_cholce_llst>

168 <except handler>
171 <exit stmt>

174 <factor llst>

177 <frml_part>

180 <gnrc_lnst>

183 <gnrc_pkg_lnst>

186 <8nrc_type_def>
189 <Identifier list>

192 <lndex>

195 <Integer>
198 <label>

201 <len or enum_spec>
204 <loc>

207 <loop_parm>

210 <mult_op>
213 <number decl>

216 <op_symbol>

219 <parm_decl>

222 <pkg_body>

225 <pkg_name>
228 <pragma>

231 <prlvate_part_opt>

100 <accept_stmt>

103 <add_op>

106 <align_clause>

109 .<arg_ltem>

112 <arg_stroke_llst>
115 <attr>

118 <basic_loop>

121 <body_stub>
124 <character>

127 <code stmt>

130 <comp_decl>

133 <comp_name>

136 <compllatlon_eof>
139 <cond>

142 <decl>

145 <decl part>

148 <designator>
151 <dlscr decl llst>

154 <dlscrete_range>

157 <entry_decl>

160 <entryname>

163 <enum_typedef>

166 <except_decl>

169 <except_name>

172 <expr>

175 <flxed pt_constr>

178 <gnrc_frml_parm>

181 <gnrc part>

184 <gnrc_subpgm_decl>

187 <goto stmt>
190.<1f stmt>

193 <lndex llst>

196 <lnteger_type_def>
199 <label llst>

202 <literal>

205 <loc clause list>

208 <loop stmt>
211 <name>

214 <numerlc llteral>

217 <or_part_

220 <parm_decl_llst>

223 <pkg_body_part_opt>

226 <pkg name_llst>

229 <primary>

232 <prlvate_type_def>

Verslon 7.0, June 1983
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101 <access_type_def>

104 <addr_spec>

107 <align_clause_opt>

110 <arg_llst>

113 <array_type_def>
116 <based Int>

119 <block_

122 <boolean_expr>
125 <cholce>

128 <comp_assoc>

131 <comp_decl_llst>

134 <comp_subtype_lnd>

137 <compilation_unit>

140 <cond_entry_call>
143 <decl ltem>

146 <delay_stmt>

149 <designator_opt>

152 <dlscr_part>

155 <else_part_opt>

158 <entry_decl llst>
161 <enum llteral>

164 <except_choice>

167 <except hand llst>

170 <excepts. opt_
173 <factor>

176 <float_pt_constr>

179 <gnrc_frml_parm_lst>

182 <gnrc_pkg_decl>

185 <gnrc_subpgm_lnst>
188 <Identlfler>

191 <Incompl_type_decl>

194 <1nit_opt>
197 <Iteration clause>

200 <label name>

203 <11teral_expr>

206 <loop_name>
209 <mode>

212 <null stmt>

215 <obJect_decl>

218 <or_part_list>

221 <pgm_comp>

224 <pkg_decl>

227 <pkg_spec>

230 <primary_list>

233 <proc or entry_call>
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234 <quallfled expr>

237 <range_constr>

240 <record_type_def>
243 <rel and llst>

248 <tel or else llst>

249 <renamlng_decl>
252 <return stmt>

258 <selected comp>

258 <seq of stmts_opt>

261 <slmple_stmt>

284 <string>

267 <subpgm_spec>
270 <subunlt>

273 <task decl>

278 <task_spec>
279 <term llst>

282 <type def>
285 <unit name list>

288 <varlant_part>
291 <with clause>

235 <ralse stmt>

238 <real>

241 <record type_repr>
244 <rel and then llst>

247 <rel-or 118t>-

250 <repr_spec>
253 <select alt>
256 <selective wait>

259 <slmple_expr>

262 <statlc_slmple_expr>

265 <subpgm_body>

268 <subtype decl>
271 <system goal_symbol>
274 <task name>

277 <task_spec_part>

280 <tlmed_entry_call>

283 <unary_op>
286 <use clause>
289 <when 11st>

292 <with use llst>

Version 7.0, June 1983
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236 <range>

239 <real_type_def>
242 <rel>

245 <rel_op>
248 <rel xor llst>

251 <repr_spec_llst>
254 <select stmt>

257 <seq of_stmts>

280 <slmple_expr_llst>
283 <stmt>

286 <subpgm_decl>

269 <subtype_Ind>

272 <task_body>
275 <task name list>

278 <term>

281 <type_decl>
284 <unit name>

287 <variant eli llst>

290 <when_pa_t_opt>

I
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Input grammar. Grammar option. Default: on

The goal symbol <Goal> ls found In rule 1.

[ 1] <Goal>

[ 2] <s>

C 3] <s>

[ 4] <fpInputLlst>

C 5] <fpInputLlst>

[ 63 <fpInput>

[ 7] <fpInput>

C 8] <fpInput>

C 9] <fpInput>

C I0] <fpInput>

[ 11] <fnDef>

[ 12] <appllcatlon>
[ 13] <name>

[ 14] <nameList>

[ 15] <nameL1st>

[ t6] <object>

[ 17] <object>

[ 18] <object>

[ 19] <fpSequence>

[ 20] <fpSequence>

[ 21] <obJectLlst>

[ 22] <obJectLlst>

[ 23] <obJectL1st>

[ 24] <atom>

[ 25] <atom>

[ 26] <atom>

[ 27] <atom>

[ 28] <atom>

[ 29] <atom>

[ 30] <atom>

[ 31] <slmpFn>

[ 32] <slmpFn>

[ 33] <fpDeflned>

[ 34] <fpBulltln>

[ 35] <fpBulltln>

[ 36] <fpBulltln>

[ 37] <fpBulltln>

[ 38] <fpBulltln>

[ 39] <fpBulltln>

[ 40] <fpBulltln>

[ 41] <fpBulltln>

[ 42] <fpBulltln>

[ 43] <fpBulltln>

[ 44] <fpBulltln>

[ 45] <fpBuiltin>

[ 46] <fpBulltln>

::= <S> <eof>

::= <fpInputLlst> .

::=

::= <fpInputLlst> <fpInput>

::= <fpInput>
::= <fnDef>

::= <application>

::= <fpCmd>

::= <classplace>
::= "D

::= { <name> <funForm> }

::= <funForm> : <object>
::= <classldent>

::= <nameLlst> <name>

::= <name>

::= <atom>

::= <fpSequence>
::= ?

::= < >

::= < <obJectLlst> >

::= <obJectLlst> , <object>
::= <obJectLlst> <object>

::= <object>
::= T

::= F

::= <>

::= <classstrng>
::= <classldent>

::= <classlnt>

::= <classreal>

::= <fpDeflned>

::= <fpBulltln>

::= <name>

::= <selectFn>

::= tl

::= ld

::= atom

::= not

::= eq
::= <relFn>

::= null

::= reverse

::= dlstl

::= dlstr

::= length

::= <blnaryFn>
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[ 47] <fpBulltln>

[ 48] <fpBuiltln>

[ 49] <fpBulltln>

[ 50] <fpBulltln>

[ 51] <fpBulltln>

[ 52] <fpBulltln>

[ 53] <fpBulltln>

[ 54] <fpBulltln>

[ 55] <fpBulltln>

[ 56] <fpBulltln>

[ 57] <fpBulltln>

[ 58] <fpBulltln>

[ 59] <selectFn>

[ 60] <relFn>

[ 61] <relFn>

[ 62] <relFn>

[ 63] <relFn>

[ 64] <relFn>

[ 65] <relFn>

[ 66] <blnaryFn>

[ 67] <blnaryFn>

[ 68] <blnaryFn>

[ 60] <blnaryFn>

[ 70] <blnaryFn>
[ 71] <blnaryFn>

[ 72] <bln&ryFn>
[ 73] <llbFn>

[ 74] <llbFn>

[ 75] <11bFn>

[ 76] <llbFn>

[ 77] <llbFn>

[ 78] <llbFn>

[ 79] <llbFn>

[ 80] <funForm>

[ 81] <funForm>

[ 82] <otherFun>

[ 83] <otherFun>

[ 84] <otherFun>

[ 85] <otherFun>

[ 88] <otherFun>

[ 87] <otherFun>

[ 88] <otherFun>

[ 89] <otherFun>

[ 90] <otherFun>

[ 91] <while>

[ 92] <condltlonal>

::= trans

::= apndl

: := &pndr
::= tlr

::= rotl

::= rotr

: := iota

::= palr

::= spllt
: := conc&t

::= last

::= <llbFn>

::= <classlnt>

:'= <=

:.= <

:.= >

:.= >=

:._-- +

** °_ --

:.----

::----/

::= or

: := &nd

: := xor

::= sln

: := COS

: := aeln

: := acos

::= log

::= exp

::= mod

::= <funForm> @ <otherFun>

: := <otherFun>

::= <classplace>

::= <slmpFn>
::= <construction>

::= <conditional>

::= <while>

: := <const&ntFn>

: := <lnsertlon>

: := <alpha>
::= ( <funForm> )

::= (whlle <funForm> <funForm> )

::= ( <funForm> -> <funForm> ; <funForm> )

[ 93] <construction> ::= [ <formLlst> ]

[ 94] <construction> ::= [ ]

[ 95] <formLlst> ::= <formLlst> , <funForm>

[ 96] <formLlst> ::= <funForm>

!
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[ g?] <constantFn>

[ g8] <Inser51on>

[ gg] <Insertion>

[100] <alpha>

::= _ <object>
::= ! <otherFun>

::= ] <otherFun>

::= _ <otherFun>
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Llst of tokens and thelr token numbers.
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Tokens option. Default: on

The reserved words and their token numbers are:

1F 2 T 3 acos 4 and

5 apndl 6 apndr 7 asln 8 atom
9 concat 10 cos 11 dlstl 12 dlstr

13 eq 14 exp 15 ld 16 lota

17 last 18 lenEth 19 log 20 mod

21 not 22 null 23 or 24 palr
25 reverse 26 rotl 27 rotr 28 sln

29 split 30 tl 31 tlr 32 trans

33 while 34 xor

The angle-bracketed terminals and their token numbers are:

35 <classldent> 38 <classlnt> 37 <classplace> 38 <classreal>

39 <classstrng> 40 <eof> 41 <fpCmd>

The special symbols and their token numbers are:

42 _ 43 _ 44 • 45 (

46 ) 47 * 48 + 49 ,

50 - 51 -> 52 / 53 :

54 ; 55 < 56 <= 57 <>

58 = 59 > 60 >= 61 ?

82 e 63 [ 64 ] 65 "D

se { e? I e8 } 8g -=

The non-termlnals and thelr token numbers are:

70 <Goal>

74 <atom>

78 <construction>

82 <fpDeflned>
86 <funForm>

90 <nameLlst>

94 <relFn>

71 <S>

75 <blnaryFn>
79 <fnDef>

83 <fpInput>
87 <Insertion>

91 <object>
95 <selectFn>

72 <alpha>
76 <conditional>

80 <formLlst>

84 <fpInputLlst>
88 <llbFn>

92 <obJectLlst>

96 <slmpFn>

73 <application>

77 <constantFn>

81 <fpBulltln>

85 <fpSequence>

89 <name>

93 <otherFun>

97 <while>

I
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Input grammar. Grammar option. Default: on

The goal symbol <full_program> is found in rule I.

[ i] <full_program>

[ 2] <program>

[ 3] <program>

[ 4] <program>

[ 5] <program head>

::= <program> <eof>

::= <program_head> <block> .
::= <declarations>

::=

::= program <classldent> ;

[ 6] <program_head> ::= program <classldent> ( <ext_flle_part> ) ;

[ 7] <ext file_part> ::= <external_flle>

[ 8] <ext flle part> ::= <ext_flle_part> , <external file>
[ g] <external file> ::= <classident>

[ 10] <declaratlons> ::= <dec1 element>

[ 11] <declarations> ::= <declarations> <dec1 element>

[ 121 <dec1 element> ::= <Include_part>
[ 131 <decl element> ::= <label decl>

[ 14 <decl:element> ::= <cnst_def_part>

[ 151 <decl_element> ::= <type_def part>

[ 161 <decl_element> ::= <var_decl_part>

[ 171 <decl_element> ::= <proc_decl>
[ 181 <dec1 element> ::= <fcn decl>

[ 191 <Include_part> ::= # include <classstrng>

[ 20_ <Include_part> ::= #lnclude <classdqstr>

[ 21_ <label_decl> ::= <label_symbol> <label_part> ;

[ 22_ <label_symbol> ::= label

[ 23 <label part> ::= <label>

[ 24_ <label_part> ::= <label_part> , <label>
[ 25_ <label> ::= <classlnt>

<cnst_def_part> ::= <const symbol> <const_list>

<const_symbol> ::= const
<const llst> ::= <const list> <constdef>

<const llst> ::= <const def>

<constdef> ::= <class_dent> = <constant> ;

<const_def> ::= <classplace> ;

<constant> ::= <unslgned_num>

<constant> ::= <classstrng>

<constant> ::= <classldent>

<constant> ::= <sign> <unslgned_num>
<sign> ::= +

<sign> ::= -

<unslgned_num> ::= <classlnt>

<unslgned_num> ::= <classreal>

<type_def_part> ::= <type_symbol> <type_list>

<type_symbol> ::= type

<type_llst> ::= <bype_llst> <type def>

<type_list> ::= <type_def>

:'-.-<classplace> ,"

::= <classldent> = <type> ;

::= <simple_type>

[ 26_

[ 27_

[ 28

[ 29

[ so:
[ 31

[ 32:
[ 3s:
[ 34:
[ 35

[ 3e:
[ 37]

[" 38

J" 3g._

[ 40]

[ 41]

E 42]
[ 48:

[ 44] <type_def>

[ 45] <type_def>

[ 46] <type>

I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
i

I

I
I



I
I

I
I
I

I

I
l
i

I
I

I

I

I
I

I
I

I

147

Mystro Translator Writing System

Pascal grammar

Version 7.0, June 1983

Page 2

[ 47] <type>

[ 48] <type>

[ 49] <type>

[ 50] <slmple_type>

[ 51] <slmple_type>

[ 52] <slmple_type>

[ 53] <scalar_type>

[ 54] <scalar_type>

[ 55] <struct_type>

[ 56] <struct_type>

[ 57] <struct_type>

[ 58] <struct_type>

[ 59] <array_type>

[ 80] <index llst>

[ 81] <index llst>

[ 62] <lndex eli>

[ 83] <record_type>
[ 64] <record end>

[ 85] <field llst>

[ 66] <fleld 11st>

[ 67] <fleld llst>

[ 68] <flxed_part>

[ 69] <fixed_part>
[ 70] <record sect>

[ 71] <record sect>

::= <struct type>

::= packed <struct_type>

::= <polnt_type>
::= <classldent>

::= ( <scalar_type> )
::= <constant> .. <constant>

::= <classident>

::= <scalar_type> , <classident>

::= <array_type>

::= <record_type>

::= <set_type>

::= <file type>

::= array [ <Index_llst> ] of <type>
::= <indel elt>

::= <IndeI llst> , <index eli>

::= <slmple_type>
::= record <field list> <record end>

::= end

::= <flxed_part>

::= <fixed_part> ; <varlant_part>

::= <variant_part>
::= <record sect>

::= <flxed_part> ; <record_sect>

::= <variable llst> : <type>

o--

[ 72] <varlab_e llst> ::= <classldent>

[ 73] <variable llst> ::= <variable list> , <classldent>

[ 74] <variant_part> ::= case <tag_ of <variant list>

[ 75] <tag> ::= <classldent> : <classldent>

[ 78] <tag> ::= <classldent>

[ 77] <variant llst> ::= <variant>

[ 78] <variant 11st> ::= <variant llst> ; <variant>

[ 79] <variant_ ::= <case_lb__llst> : <fld_lst_part>

[ 80] <variant> ::=

[ 81] <fld_lst_part> ::= ( <fleld 11st> )
[ 82] <case lbl 11st> ::= <case label>

[ 83] <case ibl llst> ::= <case lbl list> , <case label>

[ 84] <case-label> ::= <constant_

[ 85] <set type> ::= set of <slmple_type>

[ 88] <flle_type> ::= file of <type>

[ 87] <point_type> ::= - <classldent>

[ 88] <var_decl_part> ::= <var_symbol> <var_decl_llst>

[ 89] <vat_symbol> ::= vat

[ 90] <var_decl llst> ::= <varlable_llst> : <type> ;

[ 91] <var_decl:list> ::= <var_decl_llst> <varlable_llst> : <type> ;

[ 92] <vat dec1 11st> ::= <classplace> ;

[ 93] <var dec1 llst> ::= <var decl llst> <classplace> ;

[ 94] <pro__dec_> ::= <proc_headlng> ; <proc_fcn fo11> ;

[ 95] <fcn_decl> ::= <fcn_headlng> ; <proc_fcn_3011> ;

[ 96] <proc_fcn_fo11> ::= <block>

I
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[ 97] <proc_fcn_foll> ::= forward

[ 98] <proc_fcn_foll> ::= external

[ 99] <proc_fcn_foll> ::= fortran

[100] <proc_headlng> ::= procedure <proc_name> <parm_llst>

[101] <proc_name> ::= <classldent>

[102] <fcn_headlng> ::= function <fen_name> <parm_llst> : <classldent>

[103] <fcn_headlng> ::= function <fcn_name>

[104] <fcn name> ::= <classldent>

[105] <parm_llst> ::= ( <frml_parm_lst> )

[106] <parm_llst> ::=

[107] <frml_parm_ist> ::= <frml_parm_sct>

[108] <frml_parm_ist> ::= <frml_parm 1st> ; <frml_parm_sct>

[109] <frml_parm_sct> ::= var <varlable list> : <classldent>

[110] <frml parm_sct> ::= <variable_lls_> : <classldent>

[111] <frml_parm_sct> ::= <proc_heading>

[112] <frml_parm_sct> ::= <fcn_headlng>

[113] <block> ::= <declaratlons> begln <stmt_llst> end

[114] <block> ::= begin <stmt_llst> end

[115] <stmt list> ::= <statement>

[116] <stmt llst> ::= <stmt llst> ; <statement>

[117] <statement> ::= <$1>

[118] <S1> ::= if <expression> then <$1>

[119] <S1> ::= <label> : if <expression> then <S1>

[120] <$1> ::= if <expression> then <nested_ifstmt> else <$1>

[121] <$1> ::= <label> : if <expression> then <nested_ifstmt> else

<$1>

[122] <$1> ::= <non Ifstmtl>

[123] <S1> ::= <label> : <non Ifstmtl>

[124] <nested ifstmt> ::= if <expression_ then <nested_Ifstmt> else

<nested Ifstmt>

[125] <nested Ifstmt> ::= <label>-: if <expression> then <nested_ifstmt> else

<nested Ifstmt>

[126] <nested ifstmt> ::= <non Ifstmt2>

[127] <nested ifstmt> ::= <label> : <non_Ifstmt2>

[128] <non ifstmtl> ::= <for stmtl>

[129] <non-ifstmtl> ::= <whi_e stmtl>

[130] <non Ifstmtl> ::= <with stmtl>

[131] <non Ifstmtl> ::= <non ifstmt>

[132] <non ifstmt2> ::= <for stmt2>

[133] <non ifstmt2> ::= <whlle stmt2>

[134] <non Ifstmt2> ::= <with stmt2>

[135] <non Ifstmt2> ::= <non _fstmt>

[136] <non_Ifstmt> ::= <asslgn_stmt>

[137] <non Ifstmt> ::= <case stmt>

[138] <non_Ifstmt> ::= <classplace>

[139] <non_Ifstmt> ::= <empty_stmt>

[140] <non_ifstmt> ::= goto <label>

[141] <non_Ifstmt> ::= <proc_stmt>

[142] <non_Ifstmt> ::= <repeat_stmt>

[143] <non_Ifstmt> ::= begln <stmt_llst> end
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[144] <assign_stmt>

[145] <variable>

[146] <variable>

[147] <variable>

[148] <variable>

[149] <case stmt>

[150] <case llst>

[151] <case list>

[152] <case element>

::= <variable> := <expression>

::= <classldent>

::= <variable> [ <express llst> ]

::= <variable> <classident>

::= <variable> "

::= case <expression> of <case list> end

::= <case element>

::= <case llst> ; <case element>

::= <case ibl llst> : <statement>

[154] <empty_stmt>

[158] <for stmtl>

[186] <for stmt2>

[157] <for llst>

[158] <for llst>

[159] <for 11st>

[160] <repeat_stmt>

[161] <while stmtl>

[162] <while stmt2>

[163] <proc#tmt>

[164] <proc_stmt>

[165] <proc_stmt>

[166] <proc_stmt>

[167] <proc_stmt>

[170] <field width>

[171] <fleld width>

[172] <fleld width>

[173] <with stmtl>

[174] <with stmt2>

[175] <rcd var llst>

[176] <rcd var llst>

[177] <rcd vat llst>

[178] <express_llst>

[179] <express_list>

[180] <expression>

[181] <expression>

[182] <expression>

[183] <rel_op>

[184] <rel_op>

[185] <rel_op>

[186] <rel_op>

[187] <rel_op>

[188] <rel_op>

[189] <rel_op>

[153] <case element> ::=

::=

::= for <for list> do <statement>

::= for <for llst> do <nested Ifstmt>

::= <classldent> := <expression> to <expression>

::= <classldent> := <expression> downto <expression>

::= <classplace>

::= repeat <stmt_llst> until <expression>

::= while <expression> do <statement>

::= while <expression> do <nested Ifstmt>

::= <classldent> ( <act_parm_llst_ )

::= <classident>

::= write ( <speclal parms> )

::= wrlteln ( <speclal_parms> )

::= wrlteln

[168] <speclal_parms> ::= <slmple_expres> <fleld width>

[169] <speclal_parms> ::= <speclal_parms> , <slmple_expres> <field wldth>

::= : <simple_expres> : <simple_expres>

::= : <simple_expres>

::=

::= with <rcd vat llst> do <statement>

::= with <rcd vat list> do <nested ifstmt>

::= <varlable_ -

::= <rcd var list> , <variable>

::= <classplace>

::= <expression>

::= <express_llst> , <expression>

::= <slmple_expres>

::= <slmple_expres> <rel_op> <slmple_expres>

::= <classplace>

::= <>

::= <

::= <=

::= >=

::= >

::= in

[190] <slmple_expres> ::= <classstrng>

[191] <simple_expres> ::= <term>

[192] <simple_expres> ::= <slmple_expres> <add_op> <term>

[193] <add_op> ::= +

!
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[194] <add_op>

[195] <add_op>

[196] <term>

[197] <term>

[198] <mult_op>

[199] <mult_op>

[200] <mult_op>

[201] <mult_op>

[202] <mult_op>

[203] <factor>

[204] <factor>

[205] <factor>

[206] <factor>

[207] <factor>

[208] <factor>

[209] <factor>

[210] <factor>

[211] <factor>

::= or

::= <factor>

::= <term> <mult_op> <factor>

::= *

::= /

::= dlv

::= mod

::= and

::= <sign> <factor>

::= <variable>

::= <unslgned_num>

::= nll

::= ( <expresslon> )

::= [ <element llst> ]

::= [ ]
::= <classldent> ( <act_parm_llst> )

::= not <factor>

[212] <act_parm_llst> ::= <expresslon>

[213] <act_parm_llst> ::= <act_parm_llst> , <expression>

[214] <element llst> ::= <element>

[215] <element llst> ::= <element list> , <element>

[216] <element_ ::= <expression>

[217] <element> ::= <expression> .. <expression>
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Tokens option. Default: on

The reserved words and their token numbers are:

1 and 2 array 3 begin
4 case 5 const 6 dlv

7 do 8 downto 9 else

10 end II external 12 file

13 for 14 fortran 15 forward

16 function 17 goto 18 if

19 in 20 include 21 label

22 mod 23 nll 24 not

25 of 26 or 27 packed

28 procedure 29 program 30 record

31 repeat 32 set 33 then

. 34 to 35 type 38 until
37 var 38 while 39 wlth

40 write 41 wrlteln

The angle-bracketed terminals and their token numbers are:

42 <classdqstr>

45 <classplace>
48 <eof>

43 <classldent>

46 <classreal>

44 <classlnt>

47 <classstrng>

The special symbols and their token numbers are:

49 # 50 ( 51 )

52 * 53 + 54 ,
55 - 56 57 ..

58 / 59 : 60 :=

61 ; 62 < 63 <=

64 <> 65 = 66 >

87 >= 68 [ 69 ]
70 -

The non-termlnals and their token numbers are:

71 <$1>

74 <arraytype>
77 <case element>

80 <case llst>

72 <act_parm_llst>

75 <asslgn_stmt>
78 <case label>

81 <case stmt>

73 <add_op>
76 <block>

79 <case ibl llst>

82 <cnst_def_part>

I
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83 <constdef>

86 <constant>

89 <element>

92 <express_list>

95 <external flle>

98 <fcn_headlng>

101 <field width>

104 <fld_Ist_part>

107 <for stmt2>

110 <ful__program>

113 <index llst>

116 <label_part>

119 <nested Ifstmt>

122 <non Ifstmt>

125 <proc_decl>

128 <proc_name>

131 <program_head>

134 <record sect>

137 <repeat_stmt>

140 <sign>

143 <speclal_parms>

146 <struct_type>

149 <type>

152 <type_llst>

155 <var decl llst>

158 <varlable_

161 <varlant llst>

164 <while stmt2>

84 <const llst>

87 <decl element>

90 <element list>

93 <expression>

96 <factor>

99 <fcn name>

102 <file type>

105 <for list>

108 <frml_parm_lst>

111 <include_part>

114 <label>

117 <label_symbol>
120 <non Ifstmtl>

123 <parm_list>

126 <proc_fcn_foll>

129 <proc_stmt>
132 <rcd vat llst>

135 <record_type>

138 <scalar_type>

85 <const_symbol>

88 <declarations>

91 <empty_stmt>

94 <ext_flle_part>

97 <fcn decl>

100 <fle_d llst>

103 <flxed part>
106 <for stmtl>

109 <frm__parm_sct>

112 <lndex eli>

115 <label decl>

118 <mult_op>

121 <non Ifstmt2>

124 <polnt_type>

127 <proc_headlng>

130 <program>

133 <record end>

136 <rel_op>

139 <set type>

141 <slmple_expres> 142 <slmple_type>

144 <statement>

147 <tag>

150 <type_def>

153 <type_symbol>

156 <var_decl_part>
15g <variable llst>

162 <variant_part>
165 <with stmtl>

145 <stmt llst>

148 <term_

151 <type_def_part>

154 <unsigned_num>

157 <var_symbol>

160 <variant>

163 <while stmtl>

186 <with stmt2>
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An Example of a Stepwise Development Methodology

LEE A. BENZINGER*

Abstract- We glve an example of a

stepwlse development methodology for the

development of software whlch uses the

Hoare calculus and a notion of partial

eorreetness of programs wlth respect to

specifications. We prove that thls example

falls wlthln the framework provlded by an
abstract mathematical model for software

development. Since the model possesses

some of the basic properties that we would

expect of an idealised development, it fol-

lows that the example also possesses these

properties. Thls paper uses the technique of
comparing an example of a software

development methodology wlth a abstract

model for software development in order to

galn insight into the methodology.

Index Terms- Hoaee logic, partial

correctness, stepwise development.

l. Introduction

The task of developing software which meets

a given specification is very difllcult. Various

approaches have been suggested to make the task

more tractable. In [10] the problem of designing an

algorithm which meets a specification is con-

sidered. In [13] an axiomatic approach to the

problem of program of correctness proofs for pro-

grams is given, while in [22] and [11] stepwise
approaches to program development are con-

sidered. The Vienna Development Method (V'DM)
[14] is a software development method which com-

bines the notions of stepwise refinement with

proofs of correctness at each step. In [161 a step-

wise approach to software design is discussed
which includes the notion of correctness of a

software component with respect to a specification

at each step. The purpose of this paper is to con-

struct a mathematically rigorous foundation for

the stepwise approach to the development of

*Thisresearchissupportedinpartby NASA grant

NAG 1-138,Roy H. Campbell principalinvestigator.

software. This work of part of the SAGA

(Software Automation, Generation and Adminis-

tration) project, which is concerned with providing

an environment to support the theory and practice

of software development [3-7,12,15,20,21].

In order to compare different stepwise design

methodologies, to study the properties of a partic-

ular design methodology, or to develop new design

methodologies, it is valuable to have an abstract

mathematical model of the stepwise development

process. A model serves as a standard for com-

parison of design methodologies. [f we can prove

that design methodology A has the properties of an
abstract model and design methodology B either

does not have these properties or it is not known

whether B possesses these properties, then we have

a basis for choosing A over B. In developing a new

design methodology, a proof that it satisfies the

properties of an abstract model is a guarantee that

the software component obtained as a result of

using the methodology will at least possess the pro-

perties of the abstract model. This is a significant

improvement over the situation in which we impli-

citly assume that a design methodology has desir-

able properties because it seems intuitively reason-
able.

In [2] an abstract mathematical model for

the stepwise development of software is presented.

The model is quite simple in that it describes an

idealised development. Issues such as backtracking

or the effect on a development of changing the ori-
ginal specification are not considered. The model

is fairly general since it is independent of the

notions of specification, correctness, and implemen-
tation. These notions are dependent upon a par-

ticular design methodology, not the abstract
model.

In this paper we present an abstract model,

an example of a stepwise development methodol-

ogy that has the properties of the abstract model,

and sketch the proof that the properties are

satisfied by the example. Section 2 contains an
overview of the abstract model. In section 3 we

give an outline of the construction of the example

and the proof that it satisfies the requirements of
the model. Section 4 contains definitions which are



usedin the construction of the example. Sections 5

and 6 contain proofs which indicate in more detail

the methods used for showing that the example

does have the propertiesof the abstract model.

Section7 containsthe conclusion.

2. The Abstract Model

In this section we present an informal discus-

sion of the abstract model. See [21 for further

details and PrOOfS. We define an ab,tract program

A as an ordered pair, ($, C), where $ is a

specification and C is the set of all implementa-
tions which are correct with respect to $. The set

C may be empty. This can occur, for example,
when $ is inconsistent and there exists no imple-

mentation which is correct with respect to $. As

already noted, the notions of specification, imple-

mentation, and correctness are left undefined in

the discussion of the abstract model. -We are pri-

marily interested in a model for stepwise design

methodologies which allows us to study those pro-

perties which are intrinsic to an idealized stepwlse

development process, independent of the notions of

specification, implementation, and correctness.

A development D with respect to a

specification $0 is an (n + 1)-tuple of abstract pro-

grams, (A0, -_1, .--, -_n), for some nonnegative
integer n such that for each i, 0 < i < n, .4i = ($i,

Ci). Let C be a set. By {C[ we mean the cardinal-

ityofC. DiscorrectifCi+tCCi, 0<i < n. Dis
complete if IC_[----- 1. D is incomplete if ]Cn[ > 1.

Correct and complete developments are those

which start out with an abstract program _0 =

($0, Co), as the first member of the ordered {n +

1)-tuple which is the development. $0 is the origi-

nal specification. The last member of the develop-

ment is ($n, Ca). Cn is a set which contains a sin-
gle implementation and ga is the last specification

in the development. The sets of implementations

form a nested family; that is, for each integer i, 0

< i < n, Ci÷ t _C C i. Because the sets of implemen-

tations have this property, it follows that any

implementation which is correct with respect to a
given specification in a development is also correct

with respect to all preceding specifications in the

development. This property ensures that the

implementation obtained from a development is

correct with respect to the original specification.

Correct and incomplete developments are develop-

ments that are, intuitively, correct so far, but are

not finished. The last abstract program in a

correct and incomplete development is an ordered

pair, ($n, C,). C n is a set with more than a single

implementation which is correct with respect to

the specification Sn. Sn specifies a family of imple-

mentations rather than a single implementation.

In a stepwise development, developments are

formed from steps. A development step is the

result of a process of going from one abstract pro-

gram to another. A development step with respect

to a specification $i is an ordered pair of abstract

programs, (.4i, _4i+t) , such that .4i = (St, Ct) and

_i+t -:- ($i+t, Ci÷t)" Let D = ((50, Co), (St, Ct),

..., (Sn, Ca) ) be a development with respect to a

specification $0- Let (($j, Cj), ($j+t, Cj+I)) be a
development step with respect to the specification

Sj. The development D contains the development
step if j = i for some integer i, 0 < i < n - 1; that

is, the development step is (($_, Ci) , (gig-t, Ci_-t)),

where ($i, Ci) and ($i.-t, Ci.t) are successive
members of the (n + 1)-tuple which is the develop-

ment with respect to the specification $0. A

development step with respect to a specification Si

for some nonnegatlve integer i, (($i, Ci), (St,1,

Ci+t)), is correct if the following hold:

(I)C_,Ci+l--O
(2) C_÷tC_C_.

A development step with respectto a specification

s,, ((s. c,),(si÷t, ci+,)), is complete if',Ci+,l= 1 A
development step with respect to a specification $i,

(($i, Ci),($,+t, Ci+t)), is incomplete if tCi+,l > 1.

Developments can be extended by develop-

ment steps to form new developments. We state a

result about extensions of developments by

development steps.

Theorem" Let D be a correct and incomplete

development, ((S0, Co), (St, Ct), ..., ($a, Cn)), with

respect to the specification S0. Suppose that ((Sn,

Ca), ($n+t, Ca+t)) is a complete and correct

development step with respect to S_. Let Dt be

((S0, C0), (St, Ct), ..., (Sn+t, Ca.,)). Dt is a correct

and complete development with respect to the

specificationS0,which contains the given develop-

ment step.

Developments can be constructed from

development steps. The propertiesof the resulting

developments depend upon the propertiesof the

development steps used in the constructionof the

developments. The following result shows that

development steps can be viewed _s "building

blocks" for the constructionof developments.

Theorem, Let (($0, Co), (St, Ct)), ((St, Ct), (S2,

C2)), ..., ((Sa-t, Ca-t), (Sn, Ca)) be a collection of n

I

I

!

I

!

I

I

I

I

I

!

I

I

I

I

I

I

I

I



!
|
I

I
I

I

I
I
I
I
l

I

I
I
I

I
I
I

I

correct development steps with respect to the

specifications $0, $i, ..-, gu respectively, for some

positive integer n. Furthermore, suppose that

(($n-:, Ca-l), ($_, Ca)) is a complete development

step. Let D = ((So,Co), ..., (S,, Cu)).
Then D is a correct and complete development

with respect to the specification S0.

8. A Stepwlse Deslgn Methodology

[n this section we outline the approach we
use to construct an example of a stepwlse design

methodology and to prove that the methodology
actually does satisfy the constraints of the abstract

model, initially, we need to define the concepts of

an implementation, a specification, and correctness

with respect to a specification. [n the example, an

implementation is a while-program , a program in

a programming language which allows assignment

statements, composed statements, conditional

statements, and while statements. A specification

is in terms of pre- and post-conditionsand the

constructs of the while-programmlng language.

By correctnesswith respectto a specificationwe

mean an extensionof the notion of partialcorrect-

nesswith respectto formulas from firstorderlogic.

Most of the notation and terminology which we

use is in [18].We try to be consistentwith [18]

when we introduce new concepts and notation.

8.1. A Correct Development Step

In a stepwise design methodology, we must

be able to constructcorrectdevelopment steps.In

addition to a notion of correctness,itis necessary

to have a deductive system within which we can

prove that implementations are correct with

respectto specifications.For the example, we use
the axiomatic method of Hoare. The Hoare

method is used in program verification to prove
while-programs partially correct, but in the exam-

ple the method is extended so that it is used to

prove implementations partially correct with

respect to specifications at each step in a develop-

ment. Generally, at each step in a development

except for the last, a specification will specify a

family of implementations rather than a single

while-program. [n the terminology of the abstract

model, the problem of program verification is the

following: Given an abstract program, #{-_ ($,

C), and a program W, prove that W E C; that is,

given a program W, show that it is correct with

respect to the specification $. In a stepwlse metho-

dology, given an abstract program, Ai _ ($i, Ci),

we must be able to construct a new abstract pro-

gram, Ai+1 _ ($i+i, Ci÷l), so that (_i, "_i÷l) is a

correct development step. In the example, given

an abstract program, _i ----($i, Ci),we construct a

new abstract program, .4i+l _ (Si+l,Ci+l). We

alsoprove that Ci+lC Ci or W E Ci+1 impliesthat

W E Ci. The constructionof the new abstractpro-

gram _i+l and the proof that the pair of abstract

programs (/_i,/_i+l)is a correctdevelopment step

depends upon specificationtransformations,

T: Si+l.
These transformations are defined explicitly.

3.2. A Development

From the abstract model we know that to

construct a correctand complete development itis

sufficientto construct a seriesof correctdevelop-

ment steps followed by a singlecorrectand com-

plete development step. A correctand complete

development step, is a correct development step,

(.41, Ai+l) = ((Si, Ci), ($i+l, Ci+t)), with the addi-

tional property that ICi+l[---- 1. The specification

Si÷t must be detailed enough so that it specifies

exactly one whUe-program. We use the concept of

an annotated program to describe such a

specification. In [2] we prove that for an abstract

program A ---- ($, C) such that $ is an annotated
program and C = D, it follows that 'CI---- I.

3.3. Stepwlse Veriflcatlon

Given a correct development step,(_4i,-_i÷l)

---- (($i, Ci), ($i+t, Ci+t)), and a while-program W E

Ci, we introduce proof rules which, when satisfied,

enable us to prove that W E Ci+l. It is necessary
to have additional constraints other than W E Ci,

since Ci+ 1 is a subset of Ci. The theorems which
use these proof rules formalize the stepwise

verification process. The proofs of these theorems

clarify the stepwise verification process. For any

correct development step, (($i, Ci), ($i+l, Ci+l)),
and any W E Ci, the conditions under which we

can prove W E Ci+l depend upon the assumption

that we will be able to prove the "incompletely

specified parts" of W correct with respect to $i+l-

Because it is only under this assumption that we

can prove WE $i+1, we do not have a verification

of an implementation in as strong a sense as the

verification of a program until we reach the last

development step, which is correct and complete.

At this point, no additional assumptions concern-
ing the implementation W and the specification

$i+t are necessary to prove W E $i+1, since W is



completely specifiedby Si+l.

These proof rules are somewhat similar to

the rulesin [14]forcontrolrefinement.Unlike [14],

the ruleswe use are embedded in a methodology

which uses the Hoare calculus for obtaining deriva-

tions. In section 6 we give an example of a lemma

which uses the proof rules in a special case of a

composed statement specificationtransformation.

4. Baslc Deflnltlons

in thissectionwe give a precisedefinitionof

the syntax of while-programs, the syntax of

specificationsinterms of pre- and post-condltions,

partialcorrectnessof a while-program with respect

to a specification,and the syntax of annotated pro-

grams. The definitionof partialcorrectnessof a

while-program with respectto a specificationisan

extension of the notion of partialcorrectnessof a

while-program with respectto formulas. We need

to define some terms which are used in these

definitions. Let 8 be a basis for predicate logic, V

the set of variables, T s the set of terms, QFF 8 the

set of quantifier free formulas, and WFFa the set

of all well-formed formulas of first-order predicate

logic over the basis B.

Deflnltlon- (Syntaz of Lw) The set, LSw, of

while-programs for the basis B is defined induc-
tively as follows:

a) Assignraent statement If z is a variable

from V and t is a term from Ts, then
z.'_-t

is a while-program.

b) Composed statement If WI, Wz are
while-programs then

W_ ;W z
is a while-program.

c) Conditional statement If Wl, W 2 are
while-programs and e is a quantifier free

formula from QFFa, then

ire then W 1 else W 2 fi

is a while-program.

d) While statement If W l is a while-program

and e is a quantifier free formula from

QFFs, then

while e do W t od
is a while-program.

Deflnltlom (Syntaz of Ls) The set, Lss, of

specifications,for the basisB isdefinedinductively

as follows:

a) Simple specification If p, q are formulas

from WFFs, then

{P} {q}

isa specification.

b)Assignment specification If z is a variable

from V, t is a term from T B and p, q are

formulas from WFFs, then
{p} z:- t{q}

is a specification.

c) Composed specification If St, $2 are

specifications and p, q are formulas from

WFFm then

{P} St; $2 {q}
is a specification.

d) Conditional specification If St, $2 are

specifications, e is s quantifier free formula

from QFF m and p, q are formulas from

WFFs, then

{p} ire then S t else $2 fi {q}

is a specification.

e) While specification If Sl is a specification,

e is a quantifier free formula from QFFB,

and p, q are formulas from WFFs, then

{p} while e do Sl od {q}

is a specification.

We call specifications which are not simple

structured specifications. An operational seman-

tics for £.w in terms of an interpretation r for the

basis B and a definition of partial correctness with

respect to formulas is given in [18].

Deflnltlon: (Correctness with Respect to

Specifications) Let W be a while-program from
LBw. The notion that W is partially correct with

respect to the specification $ (in the interpretation

2) is defined inductively (the induction being on

the specification, S ) as follows:

a) If S is a simple specification,
{P} {q},

where p, q are formulas from WFF m then

W is partially correct with respect to S if

(i) W is partially correct with respect

to p and q (in the interpretation

.r}.

b) If S is an assignment specification,
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{p} x := t {q},
where x is a variable from V, t is a term

from TB and p, q are formulas from

WFFs, then W is partially correct with

respect to $ if the following hold:

(i) W is z.'= t.
(ii) W is partially correct with respect

to p and q.

c) If $ is a composed specification,
{P} St; $2 {q},

where SL, $2 are specifications from Lss,

and p, q are formulas from WFF s, then W

is partially correct with respect to $ if the

following hold:

(i) WisW 1 ;W 2 for someW t,W 2 E
Law.

(ii) W is partially correct with respect

to p and q.

(iii) W l is partially correct with
respect to the specification St.

(iv) W z is partially correct with
respect to the specification $2.

d) If $ is a conditional specification,
{p} ire then St else $2 fi {q},

where $1, gz are specifications from Ls8, e

is a quantifier free formula from QFFs,

and p, q are formulas from WFFs, then W

is partially correct with respect to $ if the

following hold:

(i) W is if • then Wt else W z fi for

some Wt, W 2 E Law•

(ii} W is partially correct with respect
to p and q.

(iii) W t is partially correct with

respect to the specification St.

(iv) W2 is partially correct with

respect to the specification Sz.

e) If $ is a while specification,

{p} while • do gx od {q},
where $I is a specification from Lss, e is a

quantifier free formula from QFFB, and p,

q are formulas from WFFB, then W is par-
tially correct with respect to $ if the fol-

lowing hold:

(i) W is while • do W t od for some

wt E Law.
(ii) W is partially correct with respect

to p and q.

(iii) W t is partially correct with

respect to the specification St.

Definition" Let W, I, $, p and q be as in the

preceding definition. Then the formulas p and q

are called, respectively, the pre-eondition and

po_t-¢ondition associated with the specification $.

For example, if $ is the simple specification,

{P} {q},

then the pre- and post-conditions associated with

$ are p and q.

Deflnltlom (Syntax of LA) The set, LAs, of anno-

tated pro¢rams for the basis B is defined induc-

tively as follows:

a) Assignment statement If z is a variable

from V, t is a term from Ts, and p, q are

formulas from WFF B, then

{p/z := t {q}
is an annotated program.

b) Composed statement If A t, A_ are anno-

tated programs, and p, q are formulas

from WFF 8, then
{P} AI ; A2 {q}

is an annotated program.

c) Conditional statement If A 1, A2 are anno-

tated programs, p, q are formulas from

WFFB, and e is a quantifier free formula

from QFFs, then

{p_ ire thenA z else A 2 fi {q}

is an annotated program.

d) While statement If A1 is an annotated
program p, q are formulas from WFF a,

and • is a quantifier free formula from

QFFs, then

{p} while • do A t od (q}

is an annotated program.

We make a distinction in the preceding

definitions between the sets of all while-programs,

LSw, specifications, Lss, and annotated programs,

LAB, and the corresponding sets along with an

interpretation, which we denote by Lw, £.s, LA,

respectively.

5. Derivations and Partial Correctness

In this section we assume some definitions

and results concerning Hoare logic and calculus.

See [18] for more details and [1] for a survey of
Hoare logic. We denote by HF s the set of all

Hoare formulas,
{p} W {q},

where p, q E WFF8 and W E Law is a while-



program. A theory of an interpretation I of a

basis B for predicate logic (denoted by Th(.r)) is
the set of all formulas which are valid in I. Proofs

appear in [21 for the following two lemmas. The
first lemma shows the connection between partial

correctness with respect to a simple specification
and the existence of a derivation from a theory of

an interpretation. The second lemma shows how

to construct an abstract program from a simple

specification.

Lemma: (Derivations from a Theory and Partial

Correctness) Let B be a basis for predicate logic

and I an interpretation of B. Let S be the simple

statement specification,

{P} {q/.
It follows that for each Hoare formula {pt W {q} E

HF a, if Th(2) _- {p} W {q}, then W is partially
correct with respect to the specification S.

Lemma: Let S be the simple specification,

{P} {q},
and let

C = { W E LBwI Th(_ _-- _p} W {q} }.

Then ($, C) is an abstract program.

We introduce a definition which is an exten-

sion of the notion of the deduction of a Hoare for-

mula from a theory. This definition is used to

associate a set C of implementations with a

specification $ from L_. This section also contains
a theorem which shows that the pair, ($, C), is an

abstract program. This extends a similar result

for simple specifications.

Definition: (Deduction Consistent with a

Specification) Let B be a basis for predicate logic,

W a while-program from LBw, I an interpretation
of the basis B, S a specification from Lse, and pl, q,,

respectively, the pre- and post-conditions associ-

ated with the specification $. The notion that

there is a deduction from Th(I) to the Hoare for-

mula {p'} W {ql} consistent with $, denoted by:
Th(2) __s {p,} W {q'},

is defined inductively (the induction being on the

specification, $) as follows:

a) If $ is a simple specification,
{p'} {q'},

then

Th(!) k-s {p'} W {q'}
if

(i) Th(2) k- {P'} W {q'}.

b) If $ is an assignment specification,
{p'} z := t {q'},

6

where z is a variable from V, t is a term

from T 8 then

Th(2_ _ s {p,} W {q'}

if the following hold:

(i) Wisz:=t

(ii) Th(1) k-- {P'} W {4}.

c) If $ is a composed specification,

{P'} St; $2 {q'},

where $1, gz are specifications from L_, Pt,

qt and P2, qz are the pre- and post-
conditions associated with St, and $2,

respectively, then

Th(2) k--s {p'} W {q'}

if the following hold:

(i) WisW t ;W 2 for someW t, W z E

(ii) Th(I) _-- {p'} W {q'}

(iii) Th(2_ k-st {Pt} Wt {qt}

(iv) Th(0_ s: {P2} W2 {q2}.

d) If $ is a conditional specification,

{p'} ire then St else $2 fi {q'},

where St, $2 are specifications from Ls8, e

is a quantifier free formula from QFFB, pl,

qt and P2, q2 are the pre- and post-
conditions associated with St, and $2,

respectively, then
Th(0_ Sip,} W {q'}

if the following hold:

(i) W is ife then W t else W 2 fi for
some Wt, W 2 E LBw.

(ii) Th(i) }-- {p'} W {q'}

(iii) Th(I) _ s_ {Pt} Wt {ql}

(iv) Th(_ }_s: {P2} W2 {q2}.

e) If $ is a while specification,
{p'} while e do $1 od {q'},

where St is a specification from LsB, e is a

quantifier free formula from QFFI3, and

Pt, qt are the pre- and post-conditions

associated with St, then

Th(2_ __._s{p,} W {q'}

if the following hold:

(i) W is while e do W 1 od for some
Wt E LSw•

(ii) Th(2_ _- {p'} W {q_}

(iii) Th(_ __st {Pl} W1 {q_}.

Lemma: Let W E LSw, S E L_, and let p', q' be the

pre- and post-conditions associated with S. If
Th(_ k-s {p'} W {q'},

then W is partially correct with respect to the
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specification $.

Proof: This is an immediate consequence of the

preceding definition, the definition of correctness

with respect to specifications, and the [emma on

derivations from a theory and partial correctness.

Note that in the case that S is the simple

specification,

{P) {q},

Th(Y) _s (p} W {q}, reduces to Th(_ _-- {p} W

{q}.

Just as the notion of partial correctness with

respect to specifications is an extension of the

notion of partial correctness with respect to formu-

las, the notion of a deduction from a theory of an

interpretation to a Hoare formula consistent with a
specification is an extension of the notion of a

deduction from a theory of an interpretation to a
Hoare formula. From the preceding lemma, we
have the connection between derivations consistent

with specifications and partial correctness of

while-programs with respect to specifications. We
use the next theorem in the construction of

abstract programs from specifications.

Theorem: Let SE Lss, and let pl, q, be the pre-

and post-conditions associated with $. If C is

{ W 6 Lws I Th(_ y_$ {p,} W {q'} },

then {S, C) is an abstract program.

Proof': We need to show that for each W E C, W

is partially correct with respect to $. This follows

from the preceding lemma.

8. A Speclal Case of a Correct Development

Step

We consider a somewhat simplified situation

in which we wish to construct a correct develop-

ment step. This is actually part of the basis step

for an induction proof that the example does have

the properties of the abstract model. We start

with an abstract program A ---_ (5, C) for which $

has the form,

{P} {q},

where p and q are formulas from WFFs; that is, $

is a simple specification. C is the set of while-
programs, W E Law, for which there exists a deduc-

tion in the Hoare calculus from the theory of the

interpretation of the predicate logic to the Hoare

formula {p} W {q} consistent with $; that is,

C -_ { W E Law l Th(.r) _s {p} W {q} }.

From the abstract program, ($, C), we construct a
new abstract program,

(S', c'),

7

in which the specification, _, and the set of while-

programs, C e, are related to $ and C. The rela-

tionship involves the transformation of $ by

changing the simple specification into another

specification. Using the notation of the abstract

model, we have a transformation on the

specifications,
T: $--* Y.

In terms of the example of the formal development

the transformation can be expressed as
T: {p} {q} _ {p} $1 {q}

where $i E Lss is either an assignment statement

specification, composed statement specification,

conditional statement specification, or a while

statement specification. We give a formal
definition of these transformations in this section.

Let $_ be {p} $1 {q_. C' is a set of while-

programs for which there exists a deduction in the

Hoare calculus from the theory of the interpreta-

tion of the predicate logic to the Hoare formula

{p} W {q/ consistent with St; that is, C' is
{ W E Law I Th(_r) ___s, {p_ W [q} }.

We assume that both C and C I -- O. This is an

assumption that there exist while-programs which

satisfy the specifications $ and Y. Since we are

constructing an example of an idealized develop-

ment, these assumptions are reasonable restrictions

on the specifications. There are four possibilities

for C I, depending upon the four kinds of transfor-

mation from {p} {q} to {p} 51 {q}. In this section

we will introduce conditions under which it is pos-

sible to guarantee that a while-program W E Law is

in C N C I for the case that T is a composed state-

ment transformation. As a consequence of these

conditions being satisfied, for each such transfor-

mation, T, and for each such while-program W, W

is partially correct with respect to 5_ and $.

Definition: (Specification Transformations) A

transformation, T, from a simple specification, $,

which is (p} (q}, where p, q are formulas from

WFFs, to another specification, 5_, which is the

image under T, of $, is defined as follows:

a) Assignment statement transformation If z

is a variable from V, and t is a term from

Ts, then

T: {p} {q} ---, {p} z := t {q}.

b) Composed statement transformation If Pl,

P2, ql, q2 are formulas from WFFm and

{Pl} {ql} and (P2} (q2} are specifications,
then



T:{p} {q} --_{p} {Pl} {ql};{P2_ {q2}{q}.

c) Conditional statement transformation If

Pt, P2, ql, q2 are formulas from WFFB,

and {Pl} {qt} and {P2} {qz} are
specifications, and e is a quantifier free for-

mula from QFFB, then

T :{p} {q}--*

{p} ire then {Pl} {ql}else {p_} {q_}fi{q}.

d) While statement transformation If Pl, ql
are formulas from WFFB, {Pt} {ql} is a

specification, and e is a quantifier free for-

mula from QFFB, then

T : {p} {q} --* {p} while e do {Pt} {qt} od {q}.

We note that the pre- and post-conditions

associatedwith both S and Stare p and q. Thus,

the transformation,

T: S _ P,

preserves pre- and post-condltions.

The lemma which follows gives conditions

under which it is possible to have a derivation of a

specific kind of Hoare formula. This Hoare formula

is closely related to the composed statement

specification transformation. We call these condi-

tions proof rules, since they are sufficient to

guarantee the existence of derivations in the Hoare

calculus which will lead to a correct development

step. In [2] proofs for the other three kinds of

specification transformation are given. Because of

the way in which specifications are defined, these

transformations are very similar to program

transformations. See [19] for a general survey of

program transformations.

Lemma: (Composed Statement Derivation) Let

T: S _ Y be a composed statement transforma-

tion,

T: {p} {q} _ {p} {Pl} {ql}; {P2} {q2} {q}.
Let W E LSw• Suppose that W is

Wl ;W2

for someWx, W 2 ELBw. Let p, Px, P2, q, ql, q2be

formulas from WFFs, and {p} {q}, {Pl} {ql}, and

{P2} {q2} be specifications from LsB. Furthermore,
assume that there exists a derivation of the follow-

ing formulas from the theory of the interpretation
I:

a) p=_ Px

b) ql ==> P2

c) q2 ==_>q

d) {Pl}Wl {ql}for some W zE LSw

e) {P2} W2 {qz} for some W 2 E LSw.

Then W E C N C'.

Proof: As a consequence of a) - e)thereexiststhe

followingdeduction in the Hoare calculus:

Th(_ [--- {p} W 1 ; W 2 {q}.
It follows that W E C.

Let St be {Pt} {qx} and $2 be {P2} {q2}. [f

the following hold

i) W is Wt ; W2 for some Wl, W 2 E LBw

ii) Th(_ _-- {p_ W {q}

iii) Th(!) __s_ {PI_ Wl (ql}

iv) Th(/) _._s, [p_} W2 {q2_

then

Th(!) __s' [p/ W r ,tqf

and W E C'. Condition i) holds by assumption.

Condition ii) is a consequence of a) - e). Condition

iii) follows from d) and the fact that

Th(!) _._s, {pt} Wl {ql}
is

Th(_ _-- {Pl} Wl {ql}"

Condition iv) follows from e) and the fact that

Th(!) __s, {P2} W__ {q2}

is

Th(.r) _ {P2} W2 {q2}"

In this section we have shown that the

existence of a simple specification transformation

and the satisfaction of _he proof rules implies that

WEC'NC. In [2 l it is proved that givenWEC,
a transformation of a structured specification and

the satisfaction of the proof rules then W E C'.

This gives an explicit method for going from the

higher level specification in a development step to

the lower level (more detailed) specification in a
development step. The fact that C' C_ C follows

from the existence of a specification transformation

from $ to _. The proof appears in [2].

T. Coneluslon

We have presented an example of a stepwlse

development methodology and have outlined the

proof that it has the properties of an abstract
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model for stepwlse development. We have also

given some details of the approach used to prove

that the example does have the properties of the

model. Section 6 contains the proofs for only one

of four cases needed in the basis for an induction

proof of the correctness of a development step. We

have not even considered the induction step for the

proof of the correctness of a development step in

this paper although in [2] a complete proof is

presented. In order to apply the methodology we

do need a completeness result. If we use an expres-

sive interpretation for the Hoare logic [9],[18],

then we have the required completeness. The

expressive interpretations are basically the finite

interpretation and the interpretation of the usual

arithmetic of nonnegatlve integers. The existence

of expressive interpretations is considered in [17]

and discussed in [8].

We are primarily interested in using the

technique of an abstract model as an aid in con-

structing and reasoning about stepwise develop-

ment methods. The example we have given shows

that even for the simple model we introduced

rather deep results concerning the deductive sys-

tem (such as the existence of expressive interpreta-

tions in Hoare logic in the example presented) may

be needed to prove a methodology has the proper-

tiesof the model.
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Abstract

We present an abstract model for the stepwise development of programs. The model

describes an idealized development which is independent of specification method and no-

tion of correctness. We prove several results about the abstract model. These results

show that the model possesses many of the properties that we would expect of an ideal-

ized stepwise development.

I. Introduction

Many approaches have been suggested to ease the difficulty of the task of producing software com-

ponents which satisfy given specifications; for example, in [4] the problem of designing an algorithm which

meets a specification is discussed. In [8] an axiomatic approach to correctness proofs for programs is given,

while in [11], [5] stepwise approaches to program development are presented. The Vienna Development

Method (VDM) [7] combines the notions of stepwise development and correctness proofs. In [8] a stepwise
approach to software design methodology, which incorporates a notion of program correctness with respect

to a specification, is disc_tssed.

The stepwise development of programs which satisfy given specifications has been presented as a

methodology. In order to reason about a particular design methodology, to compare different design
methodologies, or to construct new design methodologies, it would be valuable to have a abstract

mathematical model for the design process of developing verified software components by using a stepwise

development method. The purpose of this paper is to construct such a model and to show that the model

possesses the properties that one would intuitively expect of an idealised stepwise development method.

The model does not merely provide a unifying conceptual foundation for stepwise program development

methods, but the properties of the model give insight into the stepwise development methods described by

the model. For example, implicit assumptions contained within certain stepwise development methods are

actually theorems which are true for the abstract model or consequences of definitions which are used to

construct the abstract model. In the consideration of the example of a software component development
method, it becomes clear exactly what properties the example must have in order to agree with the model.

This is extremely useful, since a stepwise development method which does not have these properties cannot

be guaranteed to behave like the abstract model.

2. The Abstract Model

We give basic definitions and results which we use to construct the abstract model in section 2.1. In

section 2.2 we introduce definitions of an abstract program and three classes of developments. In section

2.3 we obtain some results about these classes of developments. In section 2.4 we introduce definitions of
classes of development steps and we show how developments can be" extended with development steps in

*This research is supported in part by NASA grant NAG 1-138, Roy H. Campbet| principle investigator



section 2.5. In section 2.8 we show that developments can be constructed from development steps, so that

development steps can be viewed as "building blocks" for developments.

2.1. Foundation for the Abstract Model

In this section we present some basic definitions and a theorem which we use to construct the model.

Most of these appear in [I0]. We mention the notion of an implementation being correct with respect to a

specification. For the purposes of constructing the abstract model and investigating the properties of the
abstract model we do not explicitly define correctness with respect to a specification. Also we do not pre-

cisely define what we mean by a specification for a software component. The basic idea is to investigate

the properties of an abstract model for stepwise development which are independent of the specification
method and notion of correctness. The purpose of the abstract model is to provide a framework to study

an incremental development method for a particular approach to specification and a particular notion of
correctness. This enables us to distinguish between those properties which are characteristic of an incre-

mental development and those properties which are intrinsic to a specific incremental development
method.

2.1.1. Notation:
Let

Bool -_ { true, false }

SPEC = { $ I $ is a specification }

IMPL = { p I p is an implementation }.

2.1.2. Deflnlt|ons Let f: SPEC × IMPL ---* Bool be defined as follows:

true if p is correct with respect to $

f($' P) ffi [fake otherwise.

2.1.a. Definitions Let $ be an element of SPEC. Let C = ( p E [MPL I f($, p) ---- true }.

It may be that C = _, that is, S is a specification for which there exists no correct implementation.

This can occur if, for example, the specification $ is inconsistent.

2.1.4. Deflnltlonl A partial order is a pair (P, R) where P is a set and R is a relation on P which is
reflexive {for all a E P, aRa), antisymmetric (for all a, b E P, aRb and bRa implies that a ---- b), and tran-

sitive (for all a, b, c E P, aRb and bRc implies that arc).

2.1.5. Definitions Let (P, R) be a partial order and S a nonempty subset of P. S is called a chain if

a_b or bRa (or both) holds for all a, b E S. This simply means that the relation "R" restricted to S is
total.

2.1.6. Definitions Let (P, R) be a partial order and S be a subset of P. Let a E S. The element a is a
least element of S if, for all b E S, aRb.

2.1.7. Deflnit|ons Let (P, R) be a partial order and S a subset of P. An element a of P is an upper

bound of S (in P) if bRa for all b E S. An element a of P is the least upper bound (lub) of S if a is the least

element of the set of upper bounds of S in P.

2.1.8. Definitions A partial order (P, R) is a complete partial order, denoted by epo, if the following
two conditions hold:

(1) The set P has a least element.

(2) For every chain $ in P the least upper bound, lub S exists.

2.1.9. Theorems Every partial order which contains a least element and contains only finite chains is a

cpo.

2.1.10. Notationi Let S be a set. By P(S) we mean the power set of S.

2.1.11. Lemma: If C i is a set of implementations which are correct with respect to the specification Si

for some integer i, i __ 0, then the ordered pair (P(Ci), C_) is a partial order.

Proofx This follows from the fact that the relation _C" is reflexive, antisymmetric, and transitive.
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2.2. Classes ofDevelopments

In this section we introduce definitions of an abstract program, a development with respect to a

specification, a correct development, a complete development, and an incomplete development. The for-

mal definitions concerning a development and the various classifications 6f developments correspond to the
intuitive notions of development and kinds of developments which occur in a stepwise development pro-
tess.

2.2.1. Definition: An abstract program _ is an ordered pair, ($, C), such that the first member of the
pair, $, is a specification, and the second member of the pair, C, is a set of implementations which are
correct with respect to $.

2.2.2. Definitions A development with respect to a specification So is an (n + 1)--tuple of abstract pro-
grams, (Jl0, Jlt, ..., Jlu) , for some nonnegative integer n such that for each i, 0 < i < n, .4i _ {$i, Ci)-

In the discussion of developments, we shall usually write out the abstract programs explicitly as

ordered pairs of specifications and sets of implementations, since it is the interaction of the components of
the ordered pair rather than the abstract programs themselves which are of interest.

2.2.8. Notations Let S be a set. By IS[we mean the cardinallty of S.

2.2.4. Definitions A development with respect to a specification S0, (($0, Co), (St, Cz), ..., ($a, Cn)) is
correct if Ci+ z _C Ci, 0 _ i < n.

It is possible that a correct development with respect to a specification, $0, will have a set of imple-

mentations, Ci, for which C i ---- _. Then all Cj, for j > i, will also be equal to the empty set. These kinds

of developments will not be of interest in themselves, since they do not lead to an implementation which is

correct with respect to the original specification, $0. What is needed is an additional property for develop-

ments, which will ensure that the sets of implementations associated with the specifications in the develop-
ment will all be nonempty. There are two properties of developments which enable us to describe the

kinds of developments that we wish to consider. These two properties are independent of the correctness

of a development, but will be used only in conjunction with correct developments. A correct development,

which is complete, is a development ending in a single implementation which is correct with respect to the

specification with which it is associated. A. correct development, which is incomplete, is a development
which may extended (in a sense which will be made precise later) to form a correct and complete develop-

merit. We define the notions of a complete development and an incomplete development more precisely.

2.2.5. Definitions A development with respect to a specification $0, (($0, Co), ($1, Ct), ..-, ($n, Cn)) is
complete if ICJ -_ 1.

2.2.6. Definitions A development with respect to a specification So, (($0, Co), (St, Ca), ..., ($n, C,)) is
incomplete if [Ca > 1.

2.8. Properties of Classes of Developments

In this section we show that the sets of implementations associated with correct developments and
correct and complete developments form nonempty, finite, nested families. This leads to theorem 2.4.2

which states that an implementation, which is correct with respect to a specification, is also correct with

respect to all preceding specifications in a development. The last result of this section states that the sets

of implementations associated with a correct and complete development form a cpo when ordered by set
inclusion.

2.3.1. Theorems Let D be a correct and complete development, ({$0, Co), (St, Ct), ..., ($n, Cn)), with
respect to the specification So- It follows that:

(1) for each integer i, 0 < i < n, Ci is z subset of the set of all implementations which are correct with

respect to the specification $i
(2) Ci_CCi, 0<i< n
(3) loll--1 -

Proof, Property {1) follows from the fact that D is a development. Property (2) follows from the fact
that D is correct, and property (3) holds because D is complete.



As a direct consequence of the preceding theorem, if D is a correct and complete development or a

correct and !ncomplete development then it follows that _or e,_ch i, 0 < i < n, Ci _ 0.

2.8.2. Theorem: Let ((So, Co), ($,, C,), ..., ($n, C,_) be a correct development with respect to the

specification S0. If p 6 Ci for some integer i, 0 < i < n, then p is correct with respect to all specifications

Sj, O__j <i.

Proofi If p 6 Ci for some integer i, 0 < i < n, then p 6 Cj for all integers j, 0 __ j < i from the definition
of a correct development.

2.8.8. Lemma: Let ((So, Co), ($I, Cl), ..., (Sa, Cn)) he a correct development with respect to a

specification t0. Let S = (C0, C,, ..., Cn}. Then S is a finite chain in (P(C0), _).
Proofs Clearly, S is finite and the order relation "C_" restricted to the set S is total.

2.8.4. Deflnltlom We call the set S a finite chain _,eoci_ted with the correct development.

2.8.5. Notations Let DV be the union of {_)} with the collection of all finite chains associated with all

correct and complete developments with respect to a specification So.

2.8.6. Theorem: The ordered pair (DV, C) is a cpo.

Proof: By lemma 2.1.11, (P(C0), C_) is a partial order. It follows that (DV, C_) is a partial order. The

least element of DV is _. By the preceding lemma and the fact that any correct and complete develop-

ment with respect to the specification So is also a finite chain in (DV, C), (DV, C_) contains only finite
chains. By theorem 2.1.9, (DV, ___)is a cpo.

2.4. Classes of Development Steps

In this section we introduce the notion of a development step and several classifications of develop-

ment steps. We classify development steps as correct, incomplete, and complete. Correct development
steps are those development steps that have properties which make these steps suitable for use in con-

structing correct developments. Incomplete development steps are used in constructing all but the final

step in a development, while a complete development step is used as the final step in the construction of a

development. The notion of a development step is fundamental, since it is the concept which describes the
result of a process of going from one abstract program to another.

2.4.1. Deflnltion: A development step with respect to a specification Si is an ordered pair of abstract

programs, (_i, Ai+l), such that/_i = (Si, Ci) and/_i+l = (Sl+l, Ci+,).

For the same reasons presented in the discussion of developments, in the discussion of development
steps, we shall usually write out the abstract programs explicitly as ordered pairs of specifications and sets
of implementations.

2.4.2. Definition: Let ((So, Co), ($,, C,), .--, ($a, Ca)) be a development with respect to a specification

S0. Let ((Sj, Cj), (Sj+l, Cj+l)) be a development step with respect to the specification Sj. The development
containm the development step if j = i for some integer i, 0 < i < n - 1, that is, the development step is

((Si, Ci), (Sl+l, Ci+l)), where (Si, Ci) and (St+l, Ci+l) are successive members of the (n + 1)-tuple which is

the development with respect to the specification So.

2.4.8. Definition: A development step with respect to a specification Si for some nonnegative integer i,
(($i, C_), (Si+l, Ci+,)), is correct if the following hold:

(1) Ci, Ci+l'_ 0

(2) Ct+l :_ Ci.

2.4.4. Deflnltlom

piers if [Ci+1[ = 1.

2.4.5. Deflnltlon:

piers if [Ci+,l > 1.

A development step with respectto a specificationSi,((Si,Ci),(&+_,Ci+,)),iscom-

A development step with respect to a specification &, ((Sl, Ci),(_+l, Ci+l)), is {nco_r_-

2.5. The Extension of Developments wlth Development Steps

The results in this section show that developments can be extended by development steps to form

new developments. The resulting new developments have properties which depend upon the original
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developments and the development steps.

2.5.1. Lemma= Let D be a development, ((So, Co), (Sz, Ca), ..., (Sn, Ca)), with respect to the specification

S0. Suppose that ((Sn, Cn) , (Sn÷l, C,_-I)) iS a development step with respect to Sn- Let D x be the ordered (n

+ 2)-tuple, ((S0, Co) , (St, C1) , ..., (Sn+t, Ca+t)). Then D t is a development with respect to the specification

So, which contains the given development step.

Proof= The ordered (n + 2)-tuple, DI, is a development with respect to the spec_cation, So, since it can

be shown that

(1) for each i, 0 <: i <: n, C i is the set of all implementations which are correct with respect to the

specification SI

(2) Ca+ t is the set of all implementations which are correct with respect to the specification Sn+x.

Property (1) follows from the assumption that D is a development, while property (2) follows from the

assumption that ((Sa, Ca), (Sa+t, Ca+Z)) iS a development step with respect to Sn. The development Dx is

clearly a development which contains the given development step, ((Sa, Ca) , (Sa+Z, Ca+z) ).

2.5.2. Lemms= Let D be a correct development, ((So, Co), (St, Ct), ..., (Sa, Ca)), with respect to the

specification So. Suppose that ((Sn, Ca), (Sn+z, Ca+l)) is a correct development step with respect to S n.

Then Dz, the ordered (n + 2)-tuple. ((S0, Co), (gz, Ca), ..., (an+z, Ca+z)), is a correct development with

respect to the specification $0, which contains the given development step.

Proofs From the preceding lemma, D t iS a development with respect to the specification So which con-

tains the given development step. D l is a correct development since it can be shown that

(1) Ci+lC_Ci, 0<i<n

(2) c. C_c_+x.
Property (1) follows from the assumption that D is correct and property (2) follows from the assumption

that the development step, ((Sa, Ca), ($a+t, Ca+z)), is a correct development step with respect to Su.

2.5.8. Theorems Let D be a correct development, ((So, Co), (Sx, Ca), ..., (Sn, Ca)), with respect to the

specification S 0. Suppose that ((Sa, Ca) , (an÷z, Ca+z) ) is a complete and correct development step with

respect to an. Let D t he ((So, Co), (St, Ca), ..., (Sa+t, Ca+z))- Dt is a correct and complete development

with respect to the specification So, which contains the given development step.

Proofi" From the preceding lemma, D z is & correct development with respect to the specification So which

contains the given development step. Because ((Su, Ca) , (Su+z, Ca+t)) is a complete development step with

respect to Sn, it follows that ICn+zl _-_ I. This shows that the development is complete.

2.5.4. Corollsrys Let D be a correct and incomplete development, ((So, C0), (Sz, Ct), ..., (an, Ca)), with

respect to the specification So. Suppose that ((Sn, Ca) , (Sn+z, Ca+z)) is a complete and correct development

step with respect to Sa. Let D z be ((So, C0), (SI, Ca), ..., (Sn+I, Ca+z)). Dz is a correct and complete

development with respect to the specification So, which contsins the given development step.

2.6. The Construct|on of Developments from Development Steps

In this section we show that developments cam be constructed from development steps. The proper-

ties of the resulting developments are dependent upon the properties of the development steps used in the

construction of the developments.

2.6.1. Lemms. Let ((5o, Co), (Sz, Cl)), ((Sz, Ca), (S_, Ca)), ..., ((Sa-Z, Ca-z), (Sa, C,)) be a collection of n

correct development steps with respect to the specifications So, Sz,..., Sn respectively, for some positive

integer n. Let D = ((So, C0), (St, C_), ..., (Sa, Ca)). Then D is a correct development with respect to the

specification So.

Proofi D is a development with respect to the specification So from the definition of a development step.

Since ((Si, Ci), Si+z, Ci+z)) is a correct development step with respect to the specification S i for each integer

i, 0 _ i < n, Ci+z C C i. It follows that D iS a correct development.

2.6.2. Theorems Let ((S0, Co), ($,, Cx)), (($z, Cz), (Ss, Cs)), ..., ((Sa-z, Ca-z), ($u, Ca)) be a collection of

n correct development steps with respect to the specifications So, Sl, ..., Sa respectively, for some positive

integer n. Furthermore, suppose that ({Sa-x, Ca-z), (Sa, Ca)) is a complete development step. Let D _-_

((So, Co) , (St, Ct) , ..., (an, Ca) ). Then D is a correct and complete development with respect to the

specification So.



Proofs From the preceding lemma, D is a correct development with respect to the specification So. Since

(($n-t, C,-1), (Sn, Cn)) is a complete development step, [CJ-_-- 1. It follows that D is a complete develop-

ment.

3. Concluslon

The abstract model describes the process of starting with a specification for a software component

and, through a series of steps, ending with an implementation which is correct with respect to the original

specification. The model has been used to construct an example of a stepwise development method in [1]

This example uses specifications in terms of pre- and post-conditions [10]. The notion of correctness

which is used is an extension of partial correctness with respect to formulas from predicate logic. In the

construction of the example, an extension of the Hoare calculus from a program verification method to a

stepwise program development method was required. Conceptually, this extension was fairly easy to make

because of the existence of the abstract model. On the other hand, the proof that an example of a stepwise

development method actually does satisfy the requirements of the abstract model may depend upon non-

trivial properties of the example. For the example that we have studied, the proof depends upon the rela-

tive completeness of the Hoare calculus [3] and the existence of expressive interpretations for the Hoare

logic [101, [21, [91.
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method and notion of correctness. We illustrate the abstract model with an ex-

ample of a program development method using Hoare calculus and partial

correctness of programs with respect to specifications which are in terms of pre-

and post-conditions.
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1.

Introduction

It is a difficult task to develop a software component which satisfies a given specification. If

the specification is not precise, as in the case of a specification in terms of natural language, the

ambiguities in the specification can create confusion as to the meaning of the specification and

the intent of the specifier. The introduction of a formal specification, which uses well-defined

notation, can eliminate ambiguities. A disadvantage of such a formal specification is that it may

be more difficult to understand, simply due to notation, than a less formal specification.

The matter of showing that a software component actually satisfies a specification can be

accomplished through testing or verification. The testing approach does not, in general, provide a

guarantee that a software component satisfies a specification, while verification quickly becomes a

formidable problem as the size and complexity of a component increases. In addition, verification

requires that a specification be expressed in some formal manner.

The task of developing a software component which satisfies a given specification can be

simplified by breaking the task into a series of subtasks or "steps". Associated with each step is a

specification and a software component. Initially, the software component is nothing more than

the original specification. At each step, the specification associated with the step is more detailed

than the specifications associated with preceding steps. In addition, the specification associated

with a particular step is consistent with the specifications associated with preceding steps. The

software components corresponding to these specifications become increasingly more detailed as

the stepwise process proceeds. At the final step in the process, the result is a final specification

and a final software component. This final specification is consistent with all preceding

specifications, including the original specification. The corresponding final software component is

an implementation which not only satisfies the specification associated with the final step, but
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also satisfies the original specification. This technique is used by the Vienna Development

Method [2].

In the Vienna Development Method the processes of developing a software component and

verifying that it actually satisfies the requirements of the original specification proceed hand in

hand. This has the dual advantage of the development process aiding the verification process and

the verification process, in turn, aiding the development process. The development process,

because of its incremental nature, breaks the verification process into smaller parts, each of

which is a piece of the total problem of verifying that the implementation which results from the

development actually satisfies the original specification. The verification process, because of its

incremental nature, aids in the development process. Indeed, the part of a software component

under development which may not satisfy the requirements of its specification is at most one logi-

cal step away from a component under development which is known to satisfy its specification.

Each step in the development will either eventually yield an implementation which will satisfy

the original specification or backtracking occurs which itself eventually yields an implementation

which will satisfy the original specification. This approach can reduce the time and cost of

developing reliable software since design decisions can be checked for correctness in the middle of

the development process and can be changed precisely at the point in the development of a

software component which is affected by these decisions.

In order to reason about a particular design approach or to compare different design

methods, it would be valuable to have an abstract model for the design process of developing

verified software components by using a stepwise development method. The purpose of this

paper is to construct such a model, to show that the model possesses the properties that one

would expect of a stepwise development method, and finally, to show an example of a particular

software component development method that falls within the framework provided by the model.
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The model does not merely provide a unifying conceptual foundation for stepwise program

development methods, but the properties of the model give insight into the stepwise development

methods described by the model. For example, implicit assumptions contained within certain

stepwise development methods are actually theorems which are true for the abstract model or

consequences of definitions which are used to construct the abstract model. In the consideration

of the example of a software component development method, it becomes clear exactly what pro-

perties the example must have in order to agree with the model. This is extremely useful, since a

stepwise development method which does not have these properties cannot be guaranteed to

behave like the abstract model.

4
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2. The Abstract Model

In this section we introduce definitions which we use to construct the model. We also

obtain some results about the model. Definitions and theorems which are standard are not num-

bered. Most of the standard definitions and theorems appear in [3]. Definitions introduced in the

construction of the model, and theorems, lemmas, and corollaries, which we prove concerning the

model, are numbered. The definitions which we introduce include the notions of an abstract pro-

gram, a development with respect to a given specification, aecorrect development, a complete

development, an incomplete development, a development step, a correct development step, and a

complete development step.

There are five main results in this section. The first result is Theorem 1 which gives three

properties of a correct and complete development. Starting with a specification and ending with

a verified implementation, these are properties that one would intuitively expect to have in an

idealized development of a software component.

Given a specification for a software component, we can associate with it a set of implemen-

tations, which are correct with respect to the specification. We define another set, denoted by

DV, of subsets of the set of implementations. The second result is Theorem 2, that the ordered

pair (DV, C_), where "C_" is the set inclusion relation on the elements of DV, is a complete partial

order. This result shows that (DV, C_) has a well-understood structure, in addition to the more

obvious "chain structure" of sets of implementations restricted to a particular development.

The third result is that correct and complete developments with respect to a given

specification can be obtained from a correct development followed by a correct and complete

development step. This shows the relationship between a correct development and a new

development which is obtained from the original development by adding a correct and complete

development step. The relationship is an immediate consequence of Theorem 4.
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The fourth result of this section shows that the correctness of an implementation of a

software component with respect to the original specification is maintained throughout the

development process, provided that the development is correct. This is the result of the Corol-

lary to Theorem 2.

The fifth result shows that development steps can be viewed as "building blocks" for

developments. We obtain correct and complete developments by building them from correct

development steps and a single correct and complete development step. This is the result of

Theorem 5.

2.1. Preliminary Definitions

In the following,we mention the notionof an implementation being correctwith respectto

a specification.For the present we choose not to considerissueswhich arisein discussionsof

correctness;for example, partialversustotalcorrectness.Also, we do not preciselydefinewhat

we mean by a specificationfor a softwarecomponent. We deferthese matters untillaterwhen

we discussin more detaila specificmethod of software component specificationand a specific

example of thismethod. The basicideaisto investigatethe propertiesof an abstractmodel for

stepwise development which are independentof the specificationmethod and notion of correct-

ness. We then use the abstract model to study an incremental development for a particular

specificationmethod and a particularnotion of correctness.This enables us to distinguish

between those propertieswhich are characteristicof an incrementaldevelopment and those pro-

pertieswhich are intrinsicto a specificincrementaldevelopment method. We give some basic

definitions,most ofwhich are standard,which are used in the constructionofthe abstractmodel.

Notation: Let

Bool-- { true, false }
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SPEC = { $ I $ is a specification }

IMPL = { p I p is an implementation /.

Definition: Let f: SPEC × IMPL --* Bool be defined as follows;

true if p is correct with respect to $

f($' P) ----[false otherwise.

DRAFT

Definition: Let S be an element of SPEC. Let C _ { p E IMPL If(S, p) = true }.

It may be that C = O, that is, S is a specification for which there exists no correct imple-

mentation. This can occur if, for example, the specification $ is inconsistent.

Definition: A partial order is a pair (P, R) where P is a set and R is a relation on P which is

reflexive (for all a E P, aRa), antisymmetric (for all a, b E P, aRb and bRa implies that a = b),

and transitive (for all a, b, c E P, aRb and bRc implies that arc).

Definition: Let (P, R) be a partial order and S a nonempty subset of P. S is called a chain if

aRb or bRa {or both) holds for all a, b E S. This simply means that the relation "R" restricted

to S is total.

Definition: Let (P, R) be a partial order and S be a subset of P. Let a E S. The element a is a

least element of S if, for all b E S, aRb.

We note that if a and b are each least elements of S it follows that aRb and bRa. Since the

relation R is antisymmetric, a _ b, so that a least element, if it exists, is unique.

Definition: Let (P, R) be a partial order and S a subset of P. An element a of P is an upper

bound of S (in P) if bRa for all b E S. An element a of P is the least upper bound (lub) of S if a is

the least element of the set of upper bounds of S in P.

Definition: A partial order (P, R) is a complete partial order, denoted by cpo, if the following

two conditions hold:

7
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(1) The set P has a least element.

(2) For every chain S in P the least upper bound, lub S exists.

Theorem: Every partial order which contains a least element and contains only finite chains is

a cpo.

2.2. The Construction of the Model

Notation: Let S be a set. By P(S) we mean the power set of S.

Lemrna: if C i is a set of implementations which are correct with respect to the specification S i

for some integer i, i __ 0, then the ordered pair (P(Ci) , C_) is a partial order.

Proof: The relation "_C" is reflexive since a E P(Ci) implies that a ___a. The relation "___" is

antisymmetric since for all a, b E P(Ci), if a C__b and b C_ a then a -_-- b. The relation "C_" is

transitive, since for all a, b, c E P(CI), if a _C b and b _Cc then a ___c.

2.3. Classes of Developments

In this section we introduce definitions of an abstract program, a development with respect

to a specification, a correct development, a complete development, and an incomplete develop-

ment. The formal definitions concerning a development and the various classifications of

developments correspond to the intuitive notions of development and kinds of developments

which occur in a stepwise development process.

Definition: An abstract program _ is an ordered pair, (S, C), such that the first member of the

pair, S, is a specification, and the second member of the pair, C, is a set of implementations

which are correct with respect to S.

Definition: A development with respect to a specification S0 is an (n -t- 1)-tuple of abstract pro-

grams, (_0, _x, ".., -_n), for some nonnegative integer n such that for each i, 0 _ i _ n, _i _-_ (Si,
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Ci).

In the discussion of developments, we shall usually write out the abstract programs expli-

citly as ordered pairs of specifications and sets of implementations, since it is the interaction of

the components of the ordered pair rather than the abstract programs themselves which are of

interest.

Notation: Let S be a set. By ISIwe mean the cardinality of S.

Definition: A development with respect to a specification So, ((So, C0) , ($1, Cz) , ..., (Sn, C.)) is

correct if Ci+ 1 C Ci, 0 _ i < n.

It is possible that a correct development with respect to a specification, $0, will have a set of

implementations, Ci, for which C i = 0. Then all Cj, for j __ i, will also be equal to the empty

set. These kinds of developments will not be of interest in themselves, since they do not lead to

an implementation which is correct with respect to the original specification, SO. What is needed

is an additional property for developments, which will ensure that the sets of implementations

associated with the specifications in the development will all be nonempty. There are two pro-

perties of developments which enable us to describe the kinds of developments that we wish to

consider. These two properties are independent of the correctness of a development, but will be

used only in conjunction with correct developments. A correct development, which is complete,

is a development ending in a single implementation which is correct with respect to the

specification with which it is associated. A correct development, which is incomplete, is a

development which may extended (in a sense which will be made precise later} to form a correct

and complete development. We define the notions of a complete development and an incomplete

development more precisely.
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Definition: A development with respect to a specification So, ((2;0, Co) , (2;1, C1) , ..., (2;n, On) ) is

complete if [Cn[ = 1.

Definition: A development with respect to a specification 2;o, ((2;0, Co), (2;1, C1), ..., (2;n, Cn) ) is

incomplete if [CJ > 1.

2.4. Properties of Classes of Developments

In this section we show that correct developments and correct and complete developments

have the properties that we would expect of developments which resulted in implementations

which satisfy the original specification for a software component. The sets of implementations

associated with all correct and complete developments with respect to a given specification have

a particularly nice structure when ordered by the relation of set inclusion. The result is that the

collection of all such sets of implementations with the order relation of set inclusion is a complete

partial order.

Theorem 1: Let D be a correct and complete development, ((So, Co) , (2;1, C1) , ..., (2;n, Cn)), with

respect to the specification 2;0. It follows that:

(1) for each integer i, 0 <_ i <_ n, Ci is a subset of the set of all implementations which are

correct with respect to the specification 2;i

(2) c_+_ C_ci, 0 <_ i < n

(3) It J= 1.

Proof: Property (1) follows from the fact that D is a development. Property (2) follows from

the _act that D is correct, and property (3) holds because D is complete.

Corollary: Let D be a correct and complete development, ((2;0, Co) , (51, C1) , ..., (2;n, Cn)), with

respect to the specification 2;0. It follows that for each i, 0 _ i _ n, C i _ O.

Proof: Property (2) implies the nesting of all of the Ci's with respect to set inclusion, starting

10
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with Co down to C_. Property (3) states that, at the last stage of the development, the set of all

implementations which satisfy Sn, that is, the most deeply nested of the Ci's , is a singleton set. A

direct consequence of property (2) and property (3) is the following:

Ci_)for l_i<n.

Corollary: Let D be a correct and incomplete development, ((So, Co) , ($1, Cz) , ..., (Sn, Cn)), with

respect to the specification S0. It follows that for each i, 0 < i < n, C i _ O.

Proof: The proof is similar to the previous corollary except that the most deeply nested of the

Ci's is a set with cardinality greater that 1.

Theorem 2: Let ((So, Co) , ($1, C1) , ..., (Sa, Cn) ) be a correct development with respect to the

specification S0. If p E Ci for some integer i, 0 < i < n, then p is correct with respect to all

specifications Sj, 0 __ j _ i.

Proof: If p E Ci for some integer i, 0 < i < n, then p E Cj for all integers j, 0 _ j < i from the

definition of a correct development.

Corollary: Let ((So, Co) , (Sz, C1) , ..., (Sn, Ca) ) be a correct and complete development with

respect to the specification S0. If p E Cn then p is correct with respect to all specifications Si, 0

i_n.

Lemma 2: Let ((S0, Co) , (Sz, CI) _ ..., (Sn, Cn) ) he a correct development with respect to a

specification S0. Let S ---_{Co, Cz, ..., Cn}. Then S is a finite chain in (P(C0) , C).

Proof: Clearly, S is finite and the order relation "C" restricted to the set S is total.

Definition: We call the set S a finite chain associated with the correct development.

Notation: Let DV be the union of {0} with the collection of all finite chains associated with all

correct and complete developments with respect to a specification S0.
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Theorem 3: The ordered pair (DV, C) is a cpo.

Proof: By the lemma of section 2.2, (P(C0) , C) is a partial order.

DRAFT

With respect to the same

order relation "C", but on the subset DV of ?(C0) , (DV, __) is a partial order. The least element

of DV is O. By the preceding lemma and the fact that any correct and complete development

with respect to the specification So is also a finite chain in (DV, C), (DV, _) contains only finite

chains. By the theorem ofsection2.1,(DV, _C)isa cpo.

2.5. Classes of Development Steps

In this section we introduce the notion of a development step and several classifications of

development steps. We classify development steps as correct, incomplete, and complete. Correct

i

I

development stepsare those development stepsthat have propertieswhich make thesestepssuit-

able for use in constructingcorrectdevelopments. Incomplete development stepsare used incon-

structingallbut the finalstep in a development, while a complete development step isused as

i

i

the final step in the construction of a development. The notion of a development step is funda-

mental, since it is the concept which describes the result of a process of going from one abstract

program to another.

i

i

Definition: A development step with respect to a specification $i is an ordered pair of abstract

programs, (_i, _i+1), such that _i = ($i, Ci) and Ai+ 1 = ($i+1, Ci+l)"

For the same reasons presented in the discussion of developments, in the discussion of

I
i
I
I

development steps, we shall usually write out the abstract programs explicitly as ordered pairs of

specifications and sets of implementations.

Definition: Let ((So, Co) , (Si, C1) , ..., (an, Ca) ) be a development with respect to a specification

So. Let ((Sj, Cj), (Sj+I, %+1)) be a development step with respect to the specification Sj. The

development contains the development step if j = i for some integer i, 0 < i < n - 1, that is, the

i 12



July 29, 1906 DRAFT

development step is ((Si, Ci) , ($i+i, Ci+l)), where (St, Ci) and (Si+l, Ci+l ) are successive members

of the (n + 1)-tuple which is the development wi_h respect to the specification S0.

Definition: A development step with respect to a specification Si for some nonnegative integer i,

((Si, Ci) , (Si+l, Ci+l)), i8 correct if the following hold:

(1) Ci, Ci+l _ 0

(2) Ci+1 _CC i.

Definition: A development step with respect to a specification $i, ((Si, Ci),(Si+l, Ci+l)), is com-

plete if ICi+ll _--- 1.

Definition: A development step with respect to a specification Si, ((Si, Ci),(Si+l, Ci+l)), is incom-

plete if ICi+ll > 1.

2.6. The Extension of Developments with Development Steps

The results in this section show that developments can be extended by development steps to

form new developments. The resulting new developments have properties which depend upon the

original developments and the development steps.

Lemma: Let D be a development, ((So, Co) , ($1, C1) , ..., ($a, Ca)), with respect to the

specification $0. Suppose that (($a, Ca), ($a+1, Cn+l)) is a development step with respect to Sa.

Let D 1 be the ordered (n ÷ 2)-tuple, (($0, Co), ($1, C1), "", ($a+1, Ca+l)). Then D 1 is a develop-

ment with respect to the specification S0, which contains the given development step.

Proof: The ordered (n -t- 2)-tuple, D1, is a development with respect to the specification, So,

since it can be shown that

(1) for each i, 0 < i < n, C i is the set of all implementations which are correct with respect

to the specification Si

(2) Ca+ 1 is the set of all implementations which are correct with respect to the specification

13
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Sn+l"

Property (1) follows from the assumption that D is s development, while property (2) follows

from the assumption that ((Sn, Cn) , ($n+l, Cn+l) ) is a development step with respect to Sn. The

development D 1 is clearly a development which contains the given development step, ((Sn, Cn) ,

(s.+x, c.+_)).

Lemma: Let D be a correct development, ((So, Co) , ($1, 01) , ..., (Sn, Ca)), with respect to the

specification $0" Suppose that ((S v Cu) , (Su+t, C_+t) ) is a correct development step with respect

to Sn. Then D1, the ordered (n + 2)-tuple, ((S0, Co) , ($1, C1) , ..., (Sn+X, Cn+l)), is a correct

development with respectto the specificationS0,which containsthe givendevelopment step.

Proof: From the preceding lemma, Di is a development with respectto the specificationS0

which containsthe given development step. D I isa correctdevelopment sinceit can be shown

that

(1) Ci+ 1 C Ci, O < i < n

(2) c. c_c.+r

Property (1) follows from the assumption that D is correct and property (2) follows from the

assumption that the development step, (($a, Cn), (Sn+l, Cn+l)), is a correct development step with

respectto S n.

Theorem 4: Let D be a correct development, ((S0, C0) , ($x, Cx), "--, (Sn, Cn)), with respect to the

specification S0. Suppose that ((Sn, Ca) , (Sn÷i, Cn+t) ) is a complete and correct development step

with respect to Sn" Let D t he ((So, Co), ($1, C1), "", (S=+1, Cn+i))" DI is a correct and complete

development with respect to the specification S0, which contains the given development step.

Proof: From the preceding lemma, D 1 is a correct development with respect to the specification

So which contains the given development step. Because (($n, Cn), (Sn+X, Cn+x)) is a complete

14
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development step with respect to Sn, it follows that [Cn+l[ = 1. This shows that the development

is complete.

Corollary: Let D be a correct and incomplete development, ((So, C0), (S1, CI), ..., (Sn, Cn)), with

respect to the specification S0. Suppose that ((Sn, Cn), ($n+1, Cn+l)) is a complete and correct

development step with respect to Sn" Let D 1 be ((So, Co), ($1, C1), "", ($n+l, Cn+I))" D1 is a

correct and complete development with respect to the specification So, which contains the given

development step.

2.7. The Construction of Developments from Development Steps

In this section we show that developments can he constructed from development steps. The

properties of the resulting developments are dependent upon the properties of the development

steps used in the construction of the developments.

Lemma: Let ((So, Co) , (S1, C1)), ((S1, Cl) , (S9., C_)), ..., (($n-P C,-1), (Sn, Cn)) be a collection of

n development steps with respect to the specifications $0, $1' ""9 $n respectively, for some positive

integer n. Let D _-_ ((S0, Co) , ($1, C1), "", (Sn, Cn))" Then D is a development with respect to the

specification $0.

Proof: This follows immediately from the definition of a development step.

Lemma: Let (($0, Co), ($1, C1)), (($1, C1), (S_, C2) ), ..., (($.-1, C,-1), ($n, Cn)) he a collection of

n correct development steps with respect to the specifications $0, $1,--', Sn respectively, for some

positive integer n. Let D _ ((S0, Co) , (S1, C1) , ..., ($n, Cn))' Then D is a correct development

with respect to the specification $0.

Proof: D is a development with respect to the specification $0 from the preceding lemma. Since

(($i, Ci), $i+1, Ci+l)) is a correct development step with respect to the specification $i for each

integer i, 0 __ i _ n, Ci+ 1 C_C i. It follows that D is a correct development.

15
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Theorem 5: Let ((So,Co),(S1,Cl)),((SI,Cl),(S2,C2)),...,((Sn_l,Cn_l),(Sn,Cn))be a collection

of n correctdevelopment steps with respectto the specificationsSo, $I,...,S. respectively,for

some positiveintegern. Furthermore, supposethat ((S._1,Cn_l),(S.,C,))isa complete develop-

ment step. Let D = ((S0,Co),(S,,CI),...,(Sn,C.)). Then S isa correctand complete develop-

ment with respectto the specificationS0.

Proof: From the precedinglemma, D isa correctdevelopment with respectto the specification

S0. Since ((Sn-I,C.-I),(Sn,Cn)) isa complete development step,[CJm_. 1. Itfollowsthat D isa

complete development.

10
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3. An Example of a Formal Development

In thissectionwe relatethe abstractmodel to an example of a formal development. In this

example an implementation isa while-program;that is,the programming language allowsassign-

ment statements,composed statements,conditionalstatements,and while statements. Correct-

ness means partialcorrectnessof a while-program with respect to specifications.This is an

extensionof theconcept of partialcorrectnessof a while-program with respectto pre- and post-

conditions,in which the pre- and post-conditionsare well-formed formulas from firstorder

predicatelogic.A specificationisbased upon the notionof pairsof pre- and post-conditionsand

the statementsallowed by the while-programming language. An abstractprogram 4 isa pair(S,

C) for which C is a set of while-programs which are partiallycorrect with respect to the

specificationS.

In a formal development we have an {n + 1)-tupleof abstractprograms, (40,41, ...,4n),

such that 4i: ($i,Ci) for 0 _ i _ n. For the firstabstract program in the development 40,

which is(So,Co),the specificationSo isthe originalspecificationand the set Co isa set of while-

programs which are partiallycorrectwith respect to So. The finalabstract program in the

development is($n,Ca) where Sn isa specificationwhich specifiesa singlewhile-program. We

callsuch a specificationan annotatedprogram. The set C n is a singletonset {W} where W isa

while-program which ispartiallycorrectwith respectto Sn.

From the abstractmodel the successsivepairsof abstract programs in a correctdevelop-

ment must be relatedto one another in the sense that each of the successivepairs are correct

development steps.In the example, we obtain constraintswhich ensure that the successivepairs

of abstract programs are correctdevelopment steps and that the lastabstract program in the

development (Sn, Cn) has the property that [Cnl = 1. These constraints are consequences of the

definitions which we introduce and the properties of the Hoare calculus.
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3.1. Preliminary Definitions

The following definitions and notation provide the basic framework used in the discussion of

the example.

Definition: A set is recursively enumerable if there exists an algorithm which recognizes ele-

ments of the set but which may not terminate for elements not in the set.

Definition: The logical symbols are exactly the following:

the connectives -_, A, V, _, and --

the equality symbol

the ezistential quantifier 3 and the universal quantifier V

the four punctuation marks., (,), and,

the variables x, y, z, xl, ..., x_, ...

the truth symbols true and false.

Notation: The set of symbols in the language of first-order predicate logic which are to be vari-

ables is denoted by V. We assume that V is infinite but recursively enumerable.

Notation: The eztralogical symbols are taken from two arbitrarily chosen sets, which are dis-

joint from one another as well as disjoint from the set of all logical symbols. These two sets are:

F, the set of function symbols.

P, the set of predicate symbols. We assume that the sets F and P are both recursively

enumerable.

Definition: A basis for predicate logic is a pair B _ (F, P) of sets of symbols, where F and P

are understood to be the sets of function and predicate symbols previously described.

18
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Definition: The set T B of allterms of (first-order)predicatelogicover a basis B ----(F, P) is

definedinductivelyby:

a) Every variable from V and every constant from F is a term.

b) Iftl,...,tn are terms forn _ 1 and f E F isan n-ary functionsymbol, then f(tl,...,tn)is

a term.

Definition: ( Syntax of Predicate Logic ) The set WFF B of all (well-formed) formulas of (first-

order) predicate logic over a basis B = (F, P) is defined inductively by:

(a) The truth symbols true and false are formulas.

Every propositional constant from P is a formula.

If t 1 and tz are terms, then t 1 ---- t_ is a formula.

If tl, ..., t a for n > 1 are terms and p E P is an n-ary predicate symbol, then p(tl, ..., ta)

is a formula.

(b) If w is a formula, then (-_ w) is a formulal

If w is a formula and x is a variable, then (Vx.w) and (_tx.w) are also formulas.

If w 1 and w 2 are formulas, then so are (w I A w2), (w 1 V w2), (w 1 ==_ w2), and (w 1 --- w2).

Notation: The set of all well-formed formulas which do not have any quantifier is denoted by

QFF s. A well-formed formula which does not have any quantifier is called quantifier free.

Definition: ( Interpretation ) Let B _ (F, P) be a basis for predicate logic. An interpretation

of B is a pair I = (D, I0) , where D is a non-empty set (called the domain of/) and I0 is a map-

ping which assigns

(1) To every constant c E F an element Io(C) E D;

19



I

I

I

i

I
I

I

I

I

I

July 29, 1986

(2) To every function symbol f E F of arity n __ 1 a total function I0(f): D n --* D;

(3) To every propositional constant a E P an element I 0 E Bool;

(4) To every predicate symbol p E P of arity n _ I a predicate 10(p): Dn "_ Bool.

DRAFT

Definition: A total function a: V --. D mapping variables to the domain D of some interpreta-

tion is called an assignment or state. The set of all assignments for some interpretation I is

denoted by V,I or just by _.

Definition: ( Semantics of Predicate Logic ) Let I -- (D, -To)be an interpretation for a basis B

---_ (F, F). To I is associated a functional, also denoted by I, which maps every term t E TB to a

function I(t): _ --, D and every formula w E WFFB to a function I(w): yl. --, Bool; the functions

/It) and I(w) are defined as follows:

Semantics of terms

(a) If c E F is a constant, then

I(c)(_r) = I0(c ) for all assignments a E _.

If x E V is a variable, then

/(x)(a) = a(x) for all assignments a E _.

(b) If tl, ..., t_ for n __ 1 are terms and f E F is an n-ary function symbol, then

/(f(tl,...,tn))(a ) -- Io(f)(I(tl)($),...,I(ta)(a)) for all assignments a E _.

Semantics of formulas

(a) l(true)(c)-- true for alla E Z.

l(false)(a)= falsefor all_ E _. Ifa E P isa propositionalconstant,then

I(a)(_) = Io(a) for all _ E _.

If tl, t 2 are terms, then

20
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/true if I(tx)(a ) = I(t2)(cr )

I(tl ----- t2)(O') = (false otherwise, for all aE E.

If tl, ..., tn for n ___1 are terms and P is a n-ary predicate symbol, then

i(p(tl,...,tn))(_ ) : I0(p)(I(tl)(_),...,I(tn)(_)) for all _ E _.

(b) If w E WFFB is a formula, then

_true if I(w)(a) -- false

I((-_w))(a) = (false otherwise, for all a E _.

If wl, w2 E WFF B then analogous statements hold for (w 1 A w2), (w 1 V w2), (w 1 _ w2),

and (wl ---w2).

If w E WFFB and x E V, then

_true if there exists d E D such that .r(w)(a[x/d]) : true

l((_]x.w))(a) : (false otherwise, for all a E E.

If w E WFFB and x E V, then

_true if for all d E D I(w)(a[x/d]) -- true

I((Vx.w))(a) : (false otherwise, for all a E _.

Definition: A formula w is called valid in an interpretation I, denoted by _zw, if I(w)(a) =

true for all assignments a E _1" The set of all formulas valid in I is denoted by Th(/).

Definition: A formula w is called logically valid, denoted by _w, if it is valid in all interpreta-

tions.

Definition: Let W be a subset of WFF B of well-formed formulas of predicate logic. An

interpretation r is called a model of W, if _1 w for every formula w E W. A formula w E WFF B

is called a logical consequence of W, denoted by W_w, if _1 w for every model I of W. The set

of all logical consequences of W is denoted by Cn(W).

Definition: ( Calculi ) Let SO be some set of syntactic objects. A calculus or axiomatic sys-

tem over SO is a pair ]( = (4, _), where
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is a finite set of axiom schemes, which are decidable subsets of SO; the elements of an axiom

scheme are called axioms

is a finite set of inference rules, which are decidable subsets of SONY( SO, n _ 1.

Definition: Let X be a (possibly empty) subset of a set SO of syntactic objects. The set of all

syntactic objects which are derivable from X in calculus K" ---- (4, _) over SO is defined induc-

tively by:

a) the basis set X U /AeUAA/' and

b) the constructor set _.

If a syntactic object s is derivable from a set of syntactic objects X in a calculus K', we

write XI--Ks or, Xl--s. If X is the empty set, we write [--s. A construction sequence of s

is called a deduction for s from X in K.

Axiom schemes

(A1) --w V w for all w E WFFe

t
(A2) w x==_ 3x.w for allwEWFF s,xEV,tET B

(A3) x_x for allxEV

(A4) x_y=_ y-_-x for allx, yEV

(A5) x_-_yAy---_z=_x----z for allx, y, zEV

(A6) xI _ Yl _ ... _ xn -_ Yn =:_ P{xl, "", xn) :=_ P(Yx, "', Ya) for all xx, ..., xn, Yl, "", Yn E V

for n :> 1 and all n-ary predicates p E P

(A7) x I ---- Yl :=_ ... ==_ xn -_- Yn =_ f(xx, "", xn) _ f(Yx, "", Yn) for all xx, ..., xn, Yx, "", Yn E V

for n _ 1 and all n-ary function symbols f E F

22



July 29, 1980 DRAFT

Inference rules

(R1)
wVw

w
-- for all w E WFFB

(R2)
w 2

wl V w_
forallw1, w 2E WFF B

(R3)
wl V (w2V w3)

(W 1 V W2) V W 3
forallwl, w2, w s E WFFB

(R4)
Wl==>w 2

(_hC.Wl) _ W 2
for all Wl, w 2 E WFFB, x E V, such that x is not free in w 2

(RS)
W 1 V W2, "_W 1 V W 3

w2V ws
for all Wl, w2, w 3 _ WFF B

3.2. The Construction of the Example

In this section we give a precise definition of the syntax of while-programs, the syntax of

specifications in terms of pre- and post-conditions, an operational semantics for while-programs,

partial correctness of a while-program with respect to a specification, and the syntax of anno-

tared programs. The definitionof partialcorrectnessof a while-program with respect to a

specification is an extension of the notion of partial correctness of a while-program with respect

to formulas.

Definition: ( Syntaz of Lw ) The set, LSw, of while programs for the basis B is defined induc-

tively as follows:

a) Assignment statement If z is a variable from V and t is a term from TB, then

x :=t

is a while program.

b) Composed statement If Wl, W 2 are while programs then

Wl ; W2
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is a while program.

c) Conditional statement

from QFFB, then

is a while program.

If WI, W z are while programs and e is a quantifier free formula

if e then W t else W z fi

d) While statement

then

is a while program.

Definition: ( Syntaz of Ls )

as follows:

If W 1 is a while program and e is a quantifier free formula from QFFe,

while • do W x od

The set, LsB, of specifications, for the basis B is defined inductively

a) Unknown specification

is a specification.

If p, q are formulas from WFFB, then

{p} {q}

b) Assignment specification

mulas from WFFs, then

is a specification.

If z is a variable from V, t is a term from T B and p, q are for-

{p} z :-_ t {q}

c) Composed specification

is a specification.

If $1, "_2are specifications and p, q are formulas from WFFn, then

{p} Sx; S_{q}

24
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d) Conditional specification If S1, $2 are specifications, e is a quantifier free formula from

QFFB, and p, q are formulas from WFFB, then

{p} ife then S 1 else 52 fi {q}

is a specification.

e) While specification If $1 is a specification, e is a quantifier free formula from QFFB, and

p, q are formulas from WFFB, then

{p} while e do $1 od {q}

is a specification.

Definition: Let S be an arbitrary set of symbols. A sequence of symbols from S is called a

string over S. A set of strings over S is called a .formal language over S. The number of symbols

in a finite string s is called its length. The sequence with no symbols, which has length 0, is called

the empty string and is denoted by e.

Definition: A configuration for a basis B and an interpretation I of B is a pair,

(W, 0.) _ (LBwU { e }) X _'I"

The first member of the ordered pair, W, represents the rest of the program to be executed, and

0. represents the contents of the variables.

Definition: ( Transition Relation ) For every basis B and every interpretation I of B, the

relation =:>c on the set of configurations (LBwU { e }) X E I is defined by:

(Wx, 0.1) =_c (W2, 0.2) iff one of the following six conditions holds:

(1) There is a variable x E V and s term t E TB such that

W 1 is Z := t ; W 2

and

0"2 = 0.1[X/I(t)(0.1)];
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(2) There are while-programs WI I,W2 l,Ws Iand thereisa quantifierfreeformula e such that

W 1 is _fe then Wl I else W21 fi ; W3 /

I

I
I

I

I
!
!

and

/Wit; W3 / if _(e)(0.1) = true

Ws is (W_'; W a' if I(e)(0.1) -- false;

(3) There are while-programs W1 I, Wz I and there is a quantifier free formula e such that

and

W 1 is while e do Wl I od ; Wg/

0"2 _ 0"I

Wt'; W 1 if I(e)(0.1) -'- trueW 2 is W_I if I(e)(0.1) -- false;

(4) There is a variable x E V and a term t E TB such that

W I is z :--- t

W_is

and

I

I

I

I

i

i

I

0.2= 0.1[x/!(t)(0.1)];

(5) and (6) are similar to (4) for (2) and (3).

Definition: A computation sequence for a state a, which is called an input state, is a sequence of

configurations

(Wl' 0.1)' (W2' 0.2)' "'"

such that W 1 _ W, 0.1 "-- 0. and for every pair of consecutive configurations in the sequence

(Wi' O'i) :=:_>c (Wi+l' 0.i÷1)

for i _ 1.

A computation sequence which is either infinite or ends with a configuration (Wk, 0.k) such that

W k ---_ e is called a computation.

i 26
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A while-program W is said to terminate for an input state a, if there is a finite computation

(W 1, 0"1), ..., (W k, Ork)

for this input state. The state ak is called the output state.

Definition: ( Operational Semantics of/-w ) Let W be a while-program from L_ over the

basis B and let I be an interpretation of this basis. The meaning of W ( in the interpretation I )

is the function 34_W): r. ---_p E, or 34(W), defined by the following:

rI if W terminates for the input state a with output state o_;=
undefined if W does not terminate for the input state a.

Definition: ( Correctness with Respect to Formulas ) Let B be_ basis for predicate logic, I an

interpretation of this basis, and E the corresponding set of states. Let W be a while-program

from LSw and let .Mz(W ) be the meaning of the program W. Let p, q be formulas from WFF B.

The program W is partially correct with respect to p and q ( in the interpretation I ) if for all

states a 6 _ it follows that if I(p)(a) = true and _/(W)(a)is defined then I(q)(_l(W))(a ) is true.

Definition: Let B, I, _., W, p, q be as in the preceding definition. Then the formulas p and q are

called the pre-condition and post-condition, respectively.

Definition: ( Correctness with Respect to Specifieation_ ) Let W be a while-program from LSw.

The notion that W is partially correct with respect to the specification S (in the interpretation

is defined inductively (the induction being on the specification, 5 ) as follows:

a) ff 5 is an unknown specification,

{P} {q},

where p, q are formulas from WFFB, then W is partially correct with respect to S if

(i) W is partially correct with respect to p and q (in the interpretation I).

b) If S is an assignment specification,

27
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{p} z := t {q},

where x is a variable from V, t is a term from T B and p, q are formulas from WFFB, then

W is partially correct with respect to 5 if

(i) Wisz:=t.

(ii) W is partially correct with respect to p and q.

c) If $ is a composed specification,

{P} $1; $2 (q},

where $I,$9_are specificationsfrom LB, and p, q are formulas from WFFB, then W ispar-

tiallycorrectwith respectto $ if

(i) W is W 1 ; W e for some Wx, W e E Lg.

(ii) W is partially correct with respect to p and q.

(iii) W 1 is partially correct with respect to the specification 81.

(iv) W e is partially correct with respect to the specification Se-

d) If $ is a conditional specification,

{p} ire then $1 else Se fi {q},

where S1, $e are specifications from L_, e is a quantifier free formula from QFFB, and p, q

are formulas from WFFB, then W is partially correct with respect to $ if

(i) W is ire thenW 1 else Weft for some W1, W e E LBw•

(ii) W is partially correct with respect to p and q.

(iii) W 1 is partially correct with respect to the specification 81.

(iv) W z is partially correct with respect to the specification Se"

e) If $ is a while specification,

{p} while e do S 1 od {q},

28
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where S1 is a specification from LsB, e is a quantifier free formula from QFF m and p, q are

formulas from WFF m then W is partially correct with respect to $ if

(i) W is while e do W 1 od for some W 1 E LBw•

(ii) W is partially correct with respect to p and q.

(iii) W 1 is partially correct with respect to the specification $1"

Definition: Let W, I, $, p and q be as in the preceding definition. Then the formulas p and q are

called, respectively, the pre-condition and post-condition associated with the specification S.

If $ is the unknown specification,

{P} {q},

then the pre- and post-conditions associated with $ are p and q.

Definition: ( Syntax of LA ) The set, LB, of annotated programs for the basis B is defined

inductively as follows:

a) Assignment statement If z is a variable from V, t is a term from Ts, and p, q are formu-

las from WFFB, then

is an annotated program.

{p} z := t {q}

b) Composed statement

WFF m then

is an annotated program.

If A1, A2 are annotated programs, and p, q are formulas from

{p} A 1 ;A2 {q}

c) Conditional statement If A1, A2 are annotated programs, p, q are formulas from WFF m

and e is a quantifier free formula from QFF8, then

29
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isan annotated program.

IP} ire then A 1 else A 2 fi ftq}

DRAFT

d) While statement If A 1 is an annotated program p, q are formulas from WFFB, and e is a

quantifier free formula from QFFB, then

_p} while e do A 1 od _q}

is an annotated program.

We make a distinction in the preceding definitions between the sets of all while-programs,

LBw, specifications, LsB, and annotated programs, LAn, and the corresponding sets along with an

interpretation, which we denote by Lw, Ls, LA, respectively.

3.3. The Hoare Logic and Calculus

Given that an implementation is a while-program, a specification is in terms of pre- and

post-conditions, a_ld correctness is partial correctness of while-programs with respect to these

specifications, it is necessary to have a logic and a calculus for a discussion of a formal develop-

ment within this framework. The Hoare logic and calculus provide a natural means for reasoning

about such a formal development. We give some basic definitions and state some results concern-

ing Hoare logic and Hoare calculus which we use in later sections to discuss the example of a for-

mal development. These are from [3]. For a survey of Hoare logic, see [1].

Definition: ( 5yntaz of Hoare Logic ) Let B be a basis for predicate logic. A Hoare formula

over the basis B is an expression of the form

{p} W {q)

where p, q E WFFe are formulas of the predicate logic and W E L_ is a while program.

Definition: ( Semantics of Hoare Logic ) Let an interpretation I of a basis B for predicate

logic be given, and let _ be the corresponding set of states. Every Hoare formula {p} W {q/ E
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HF B ismapped by a Semantic functional,alsodenoted I,to a function

l({p}W {q}):_ --_Bool

definedas follows:

ifl(p)(_)= true

l({p}W {q})(_)=true iff and if_(W)(#)is defined,

then l(q)(_/(W)(#)) = true.

Definition: A Hoare formula, {p} W {q}, is said to be valid in an interpretation I, denoted by

ifI({p}W {q})(_)----trueforallstates_ E ]_.

We note that to say a Hoaxe formula, {p} W {q},isvalidin an interpretationI isa restate-

ment within the contextof Hoare logicof the factthat W ispartiallycorrectwith respectto the

formulas p and q in the interpretation !. More generally, {p} W {q) is valid in an interpretation

I if and only if W is partially correct with respect to the unknown specification, {p} {q}.

fDefinition: A Hoare formula, {p} W i q}, is said to be logically valid, denoted by

{p} W {q}

if_I {P} W {qlfor allinterpretationsI.

Definition: A Hoare formula; {p} W {q}, is called a logical consequence of a set F ___WFF B of

formulas of the predicate logic, denoted by

F _ {p} W {q}

if _x {P} W {q_ holds for all models I of F.

Definition: The Ifoare calculus (over a basis B for a predicate logic) is a calculus over the union

of the set HF 8 of Hoare formulas and the set WFF B of formulas of the predicate logic and con-

sists of an axiom (scheme) and five inference rules.
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(i) Assignment axiom

forallp E WFFB, x EV, t E Ts

j t f 1tPx} x := t tPJ

(ii) Composition rule

{p} W 1{r},{r} W2 {q}

{p}Wz; W_ {q}

forallp,q, r E WFFs, Wz, Ws E L_/

(iii) Conditional rule

{p A e} W 1 {q},{p A "-e}W 2 {q}

{p} ire then W 1 else W 2 fi {q}

forallp,q E WFFm w E QFFR, W z,W_ E Lws•

(iv) While rule

{p̂ e} w_ {p}

{p} while e do W 1 od {p A --_e)

for allp E WFFra, e E QFFB, Wl E L2s.

(v) Consequence rule

p_ q, {q}w (r_, r _ s
{p)w {s}

forallp,q,r,s E WFFn, W E LB.

Lemma: (Derived Rule ) For allp, q E WFF B,x E V, and t E Ts itfollowsthat:

p_q_

{p}x:=t{q}

The following theorem states that the formulas which are derivable in the Hoare calculus

are logical consequences of subsets of WFFn; that is, in an intuitive sense, the derivable formulas

32
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are true. In particular, this theorem holds when the subset of WFF B is a theory.

Theorem: ( Soundness of the Hoare Logic ) Let B be a basis for predicate logic, let p, q E

WFFB, and W E L_. Then for each subset F _C WFF B and each Hoare formula {p} W {q} C

HFsi

if F I--- {p} W {q}, then F _ {p} W {q}.

Lemma: ( Hoare Logic is a First-order Logic ) Let B be a basis for predicate logic and I an

interpretation of B. Then for each Hoare formula h E HF B

I h iff Th(/) _ h.
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4..A. Development

It follows from Theorem 5 that a complete and correct development can be obtained from a

finite sequence of correct development steps, if the finite sequence meets the additional require-

ment that the final step in the development is complete. This reduces the problem of construct-

ing a correct and complete development to the problem of constructing a finite sequence of

correct development steps, the last step also being complete.

Within the framework of the Hoare calculus, we construct an example of a development as a

finite sequence of abstract programs. Given a specification, $, we need to be able to associate

with it a set of while-programs which are partially correct with respect to the given specification.

This will enable us to construct an abstract program from the specification. We have the notion

of partial correctness of a while-program with respect to a specification. We need, however, a

notion in terms of a derivation within the Hoare calculus, which will imply partial correctness of

a while-program with respect to a specification.

4.1. Derivations and Partial Correctness

In this section we present some preliminary results which show the connection between

derivations from a theory of an interpretation in the Hoare calculus and partial correctness. The

following lemma connects a Hoare formula which is derivable from the theory of an interpreta-

tion with the notion of partial correctness of unknown specifications.

Lemma: ( Derivations from a Theory and Valid Hoare Formulas ) Let B be a basis for predi-

cate logic and Z an interpretation of B. It follows that for each Hoare formula h E life, if Th(/)

F- h then _I h.

Proof: From the soundness of the Hoare calculus, if Th(/) _- h, then Th(/) _ h. From the

lemma that Hoare logic is a first-order logic, it follows that _I h.
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As an immediate consequence of this lemma, we see that if there exists a derivation of the

Hoare formula,

{p}w {q},

from the theory of an interpretation, then W is partially correct with respect to an unknown

specification {p} {q}. This relationship between derivations from a theory and partial correctness

is the result of the next lemma.

Lemma: ( Derivations from a Theory and Partial Correctness ) Let B be a basis for predicate

logic and I an interpretation of B. Let $ be the unknown statement specification,

{P} {q}.

It follows that for each Hoare formula {p} W {q} E HF B, if Th(/) [--- {p} W {q}, then W is pax-

tially correct with respect to the specification $.

Proof: From the preceding lemma, it follows that _I {P} W {q}. Therefore, W is partially

correct with respect to the specification 5.

It is possible to associate with unknown specifications sets of while-programs, which are

defined in terms of derivations within the Hoare calculus. These sets have the property that any

element is a while-program which is partially correct with respect to the unknown specification

with which it is associated. The following lemma constructs an abstract program from an unk-

nown specification.

Lemma: Let 5 be the unknown specification,

(P} (q},

and let

C _ { W E LBwI Th(/) [-- {p} W {q} }.

Then (5, C) is an abstract program.

a5 C-

l
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Proof: We need to show that for each W C C, W is partially correct with respect to S.

lows from the preceding lemma.

DRAFT

This lot-

4.2. The Construction of an Abstract Program

In thissectionwe introducea definitionwhich isan extensionof the notionof the deduction

of a Hoare formula from a theory. This definitionisused to associatea setC of implementations

with a specificationS from Lse. This sectionalsocontainsa theorem which shows that the pair,

(S, C), is an abstract program. This extends a similar result for unknown specifications.

Definition: ( Deduction Cor_sistent with a Specification ) Let B be a basis for predicate logic,

W a while-program from L_, I an interpretation of the basis B, $ a specification from LsB, and

pl, ql, respectively, the pre-- and post-conditions associated with the specification $. The notion

that there is a deduction from Th(!) to the Hoare formula {p_} W {q_) consistent with $, denoted

by:

Th(_ j_..s {p_} W {q_},

is defined inductively (the induction being on the specification, $) as follows:

a) If S is an unknown specification,
/

then

if

(i) Th(])l-- {p'}W {q'}.

{p'} {q'},

Th(_ _---s (p'} W {ql}

b) If $ is an assignment specification,

{pl} z :ffi t {ql},

where z is a variable from V, t is a term from T B then

30



July 29, 1986 DRAFT

if

(i) W is z := t

(ii) Th(.r)}--- {p'} W {q'}.

Th(2) k-s {p'} W {q'} I

I

I
c) If 5 is a composed specification,

{P'} S 1 ; S2 {q'},

where 51, S2 are specifications from L_, Pl, ql and P2, q2 are the pre- and post-conditions

associated with 51, and S2, respectively, then

Th(/) }_.s {p,} W {q'}

if

(i) W is W 1 ; W 2 for some Wl, W_ E LB

(ii) Th(.r) }-- {p'} W {q'}

(iii) Th(/)k --s_ {Pl} Wl {ql}

(iv) Th(/)}__s, {pz} W2 {q2}-

I
I

I
I

I
I

I
d) If $ is a conditional specification,

{p'} ire then S 1 else S2 fi {q'},

where 51, 52 are specifications from LB, e is a quantifier free formula from QFFB, Pl, ql

and P2, q_ are the pre- and post-conditions associated with $1, and 5_, respectively, then

Th(/) I--s {p'} W {q'}

if

(i) W is ire then W 1 else Wz/_ for some Wl, W 2 E L B.

(ii) Wh(.r)I-- {p'} W {q'}

(iii) Wh(.r)k- s' {Pl} Wl {ql}

I

I
I
I
I
I

37
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(iv) Th(I) I-s' {P2} W2 {q2)"

e) If S is a while specification,

DRAFT

{pl} while e do S 1 od {q'},

where 51 is a specification from LsB, e is a quantifier free formula from QFFB, and Pl, ql

are the pre- and post-conditions associated with $1, then

Th(_ __s {p_} W {q_}

if

(i) W is while e do W x od for some W x E Lew•

(ii) Th(_ }-- {p'} W {q'}

(iii) Th(I) [_.s, {Pl} W1 {ql}-

Lemma: Let W E LBw, 5 E L_, and let p_, q_ be the pre- and post-conditions associated with $.

If

Th(]) [_.S {p,} W {q'},

then W is partially correct with respect to the specification $.

]Proof: This is an immediate consequence of the preceding definition, the definition of correct-

ness with respect to specifications, and the lemma on derivations from a theory and partial

correctness.

Note that in the case that 5 is the unknown specification,

{P} {q},

Th(_ _._s {p} W {q}, reduces to Th(_ I-- {p} W {q}.

Just as the notion of partial correctness with respect to specifications is an extension of the

notion of partial correctness with respect to formulas, the notion of a deduction from a theory of

an interpretation to a Hoare formula consistent with a specification is an extension of the notion
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of a deduction from a theory of an interpretation to a Hoare formula. From the preceding

lemma, we have the connection between derivations consistent with specifications and partial

correctness of while-programs with respect to specifications. We use the next theorem in the

construction of abstract programs from specifications.

Theorem: Let S E LsB, and let pl, ql be the pre- and post--conditions associated with $. If C is

{ W E L_ ITh(/) ___s {p_} W {qI} },

then (S, C) is an abstract program.

Proof: We need to show that for each W E C, W is partially correct with respect to S. This fol-

lows from the preceding lemma.

4.3. The Construction of a Development

We recall that a development with respect to a specification 50 is an (n + 1)-tuple of

abstract programs, (_0, _1, .-., An), for some nonnegative integer n such that for each i, 0 _ i

n, _i _-_ (Si, Ci)" Let SO be a given specification and let p_, q_ be the pre- and post-conditions

associated with S0. We can form an abstract program _0 by defining CO to be

[ W E LSw I Th(.r) f.._s, {p_} W {q_} }.

The fact that A0 is an abstract program is the main result of the preceding section. If the

specification SO is itself an annotated program, then IC01----- 1 and A0 is a correct and complete

development.

If S0 is not an annotated program, rhea it "contains" an unknown specification. We prove

this fact in the course of constructing a correct development step. The notion that a specification

contains an unknown specification will be defined precisely in the section on a correct develop-

ment step. Assume that we have a way of constructing a correct development step; that is, from

39
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an abstract program _q0, which is (So, Co), we can construct a new abstract program _ql, which is

($1' C1), such that C 1 C C 0. C 1 is defined to be

!

I

{ W e L_ J Th(/) [._s_ {p,} W {q'} }.

If S1 is an annotated program then 1Cl1 = 1. It follows that the pair, (_q0, _ql), which is

((So, Co), (Sl, Cl)),

I

I

i
I
I

is a correct and complete development.

In general, if we have an incomplete development, (_q0, _ql, "", _i-1), then, assuming that we

have a way of constructing a correct development step, we can construct (_qi-1, _qi), where _qi is

($i, Ci) and Ci is

{ W E Lwe I Th(_ J---s_{p_} W {q_} }.

If $i is an annotated program, then [cil-- 1 and (_q0, _ql, "", _qi) is a correct and complete develop-

ment; otherwise, we continue by constructing a new correct development step, (_qi, _qi+l). Since

I

I
l

I
I

the abstract model describes an idealized development which always ends with an implementa-

tion which is correct with respect to the specification with which it is associated, by assumption,

in the example of a development within the framework of the Hoare calculus, we restrict our-

selves to a consideration of those cases for which there exists a nonnegative integer n, and

abstract programs, #q0, _ql, ..., _qn, such that (_0, _ql, "", "_n) is a correct and complete develop-

ment. In short, the example we present gives an explicit construction of a development, which

we prove to be correct and complete, under the assumption that a correct and complete develop-

ment exists.

I
I
I

In the next section, we give a construction of correct development step. We define a

specification transformation,

T: Si -_ Si+.

and we give conditions under which it is possible to have a transformation, T, which preserves

I 40



July 29, 1986 DRAFT

partial correctness. More precisely, we prove that for each nonnegative integer i, if there exists a

suitable specification transformation,

T: Si _ Si+l,

then W E Ci implies that W E Ci+ 1- This result can be restated as follows: If we have a while-

program which is partially correct with respect to $i and several other constraints are satisfied

concerning the transformation T, then this while--program is partially correct with respect to the

new specification, Si+1.

41
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5. A Correct Development Step

In the abstract model a development step with respect to a specification S is a pair of

abstract programs ((S, C), (_, C')).

abstract program,

In the example, it is necessary to precisely define a new

(Y, C'),

(8, C).

given an abstract program,

Given a specification, S, we define a transformation, T, from S to _. We associate with 8_ a

set of implementations, CI, such that (b_, C I) is an abstract program. In order to define a

specification transformation we need to define the notion that a specification "contains" an unk-

nown specification. We also prove two theorems which depend upon this definition. The first

theorem relates specifications and annotated programs. The second theorem is a result about the

cardinality of the set of implementations which are partially correct with respect to a

specification which is also an annotated program. The definition and theorems are in section 5.1.

In section 5.2 we define a specification transformation,

T: $ -'_ Y,

for the special case in which $ is an unknown specification. We introduce proof rules which are

sufficient for the construction of a correct development step,

((s,c),(y, c,)).

In section 5.3 we extend the definition of a specification transformation to include a larger class

of specifications than the unknown specifications. In section 5.4 we extend the notion of proof

rules to include this larger class of specifications.

It is also necessary to prove that each step in the development is correct for this larger class

of specifications. In terms of the abstract model this involves proving that C' C_ C. In section 5.5

42



July 29, 1986 DRAFT

we show that under the generalized specification transformation,

T: $---* $1,

the pair of abstract programs,

((s, c), (s,, c,)),

is a development step with the property that C o ___C. In section 5.6 we prove that under the gen-

eralized specification transformation for which the proof rules hold, if there is a W E C, then W

E C _. Thus, given the existence of an appropriate specification transformation for which the

proof rules hold, it is possible to prove that a while-program, which is partially correct with

respect to the specification S, is also partially correct with respect to the transformed (and more

detailed) specification SI.

5.1. Specifications and Annotated Programs

In this section we lay the foundation for the construction of a correct development step. We

formally define the notion that a specification "contains" an unknown statement specification.

This formal definition corresponds to the meaning that one would intuitively expect for the idea

that 0ne specification contains another specification. We use this definition in the proofs which

occur in the construction of a correct development step.

Definition: ( Syntax o.f L{p} {q} )

specification,

B
The set, L{p} {q}, of specifications which contain the unknown

{P} {q},

for formulas p, q from WFF n for the basis B is defined inductively, the induction being on a

specification S which has pre- and post-conditions pl and ql, respectively, as follows:

Basis

a) Unknown statement specification If $ is the unknown specification,

43
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then S contains the unknown specification,. {p} {q}.

Induction step

DRAFT

b) Composed statement specification Let Sx, 52 be specifications from LB, and suppose that

either 51 or $2 contains the unknown specification, {p} {q}. If $ is the composed state-

ment specification,

{P'} SI; S2 {q'},

then S contains the unknown specification, {p} {q}.

c) Conditional statement specification Let Sx, $2 be specifications from LB, e a quantifier

free formula from QFFB, and suppose that either $1 or $2 contains the unknown

specification, {p} {q}. If $ is the conditional statement specification,

{p'} i/e then ,S 1 else $2fi {q'}

then 5 contains the unknown specification, {p} {q}.

d) While statement specification Let St be a specification from LB, e be a quantifier free for-

mula from QFFB, and suppose that 51 contains the unknown specification, {p} {q}. If 5 is

the while statement specification,

{p'} while e do $1 od {q_},

then 5 contains the unknown specification, {p} {q}.

The theorem which follows shows the relationship between specifications which do not con-

tain unknown specifications and annotated programs.

Theorem: ( Specifications and Annotated Proframs ) If S E Lsn does not contain any unknown

statement specification, then $ is an annotated program.

44
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Proof: The proof is by induction on the specification S.

DRAFT

a) If 5 is an assignment specification,

_p} z := t {q},

where z is a variable from V, t is a term from TB and p, q are formulas from WFFB, then

S is an annotated program by definition.

b) If 5 is an composed specification,

{p} Sl; S2 {q},

where 51 and $z are specifications,p, q are formulas from WFFB, and $ isa specification

which does not contain any unknown statement specification,itfollowsthat $1 and 52

alsodo not containany unknown statement specification.By the inductionhypothesis,SI

and 5_ must be annotated programs. It followsby definitionthat $ isan annotated pro-

gram.

c) If $ is a conditional specification,

{p} ire then $1 else $2 fi {q},

where 5x, S2 are specifications, e is a quantifier free formula from QFFB, p, q are formulas

from WFFe, and $ is a specification which does not contain any unknown statement

specification, it follows that Sx and $2 also do not contain any unknown statement

specification. By the induction hypothesis, Sx and $2 must be annotated programs. It fol-

lows by definition that $ is an annotated program.

d) If 5 is while specification,

{p} while • do $1 od {q},

where 51 is a specification, e is a quantifier free formula from QFFB, p, q are formulas

45
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from WFFB, and S is a specification which does not contain any unknown statement

specification, it follows that $1 also does not contain any unknown statement

specification. By the induction hypothesis, $1 must be an annotated program. It follows

by definition that $ is an annotated program.

Intuitively, specifications which contain unknown specifications, may not fully specify pro-

grams. We can consider such specifications as being in some sense "incomplete." On the other

hand, specifications which do not contain any unknown specifications are not "incomplete", hut

can be associated with a specific program. The following theorem makes these ideas precise.

Theorem: Let ($, C) be an abstract program. If $ does not contain any unknown specification

and C _ 0, then IC I-- 1.

Proof: The proof is by induction on the specification $.

a) If $ is an assignment statement specification,

{p} z := t {q},

where z is a variable from V, t is a term from T B and p, q are formulas from WFFB, then

C-_ { z:ftEL_ i Th(_ i--- {p} z:ft {q} }.

SinceC _ _),thereexistsa W E C and W isz :-_t.Itfollowsthatici= 1.

b) If Sis a composed specification,

{p}$_; s_(q),

where $I and $2 are specifications,p, Pl, P2_cboh,q2 are formulas from WFFB_ Pl,ql are

the pre- and post-conditionsassociatedwith $I,P2, q2 are the pre- and post-conditions

associatedwith $_, p, q are the pre- and post-conditionsassociatedwith S, and $ isa

specificationwhich does not containany unknown statement specification,itfollowsthat

SIand S2alsodo not containany unknown statement specification.Let
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Let
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C I = { W e LBwI Th(/) [.._s, {Pl} W {ql_ }"

C 2 = { W E L_ ITh(/)__.s, {P2} W {q2} }"

Since C _ O, both C 1 and C2 _ O. By the induction hypothesis, it follows that ICll -_ 1

andlC21_ 1. IfWEC, thenWisW l;w 2forw 1EC landw 2EC2. ThereforelCI

.

I
I
I

I
I

I
c) If $ is a conditional specification,

{p) if e then $1 else $2 fi {q},

where $1 and $9 are specifications, e is a quantifier free formula from QFFB, p, Pl, P2, q,

ql, q: are formulas from WFFB, Pl, ql are the pre- and post-conditions associated with

:;1, P_, q: are the pre- and post-conditions a_ociated with $2, P, q are the pre- and

post-conditions associated with $, and $ is a specification which does not contain any

unknown statement specification, it follows that $1 and S2 also do not contain any unk-

nown statement specification. Let

C 1 = { W E L_, I Th(/) J--sx {Pl} W {ql} }"

Let

C: = { W e LBwI Th(/) [_.s, {p:} W {q:} }.

Since C _ O, both C 1 and C 2 _ O. By the induction hypothesis, it follows that ICll _ 1

and IC21-_ 1. IfW E C, then W is

ire _ Wl e/se W 2

for W I E C1 and W 2 E C2. Therefore ICI_ 1.

d) If S is while specification,

{p} while e do $1 od {q},

I
I

I
I
I

I
I

I
I
I
I

I
47



I
I
I

I
I

I

I
I

l
I
I
I

I

I
I

I
I
I

I

July 29, 1988 DRAFT

where 51 is a specification, e is a quantifier free formula from QFFB, p, Pl, q, ql are for-

mulas from WFFB, Pl, ql are the pre- and post-conditions associated with $1, P, q are the

pre- and post-conditions associated with $, and $ is a specification which does not con-

tain any unknown statement specification, it follows that $1 also does not contain any

unknown statement specification. Let

C 1 = { W E Lwn ITh(_ [...sl {Pl} W {ql} }"

Since C # O, C 1 # O. By the induction hypothesis, it follows that ] Ctl = 1. If W E C,

then W is

for W 1 E C 1. Therefore ICI = 1.

while e do W 1 od

5.2. A Special Cue of & Correct Development Step

Initially, we consider a somewhat simplified situation in which we wish to construct a

correct development step. Let us consider the ordered pair, ($, C) for which 5 has the form,

{P} {q},

where p and q are formulas from WFF B. C is the set of while--programs, W E L_, for which

there exists a deduction in the Hoare calculus from the theory of the interpretation of the predi-

cate logic to the Hoare formula {p} W {q} consistent with $; that is,

C -- { W E Lg I Th(_ [._s {p} W {q} }.

From the abstract program, ($, C), we construct a new abstract program,

(y, c'),

in which the specification, 5_, and the set of while--programs, C _, are related to $ and C. The

relationship involves the transformation of $ by changing the unknown specification into a

another specification. Using the notation of the abstract model, we have a transformation on the

48
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specifications,

T: S---'S'.

In terms of the example of the formal development the transformation can be expressed as

T: {p} {q} --* {p} SI {q}

where S x E Ls_ is either an assignment statement specification, composed statement specification,

conditional statement specification, or a while statement specification. We give a formal

definition of these transformations in this section.

Let $'be {p} Sx {q}. Clisa setof while-programs forwhich thereexistsa deduction in the

Hoare calculusfrom the theory of the interpretationof the predicatelogicto the Hoare formula

{p} W {q[ consistent with $Y;that is, C' is

{ W E L_ I Th(/)[-- s_ (p} W {q} t.

We assume that both C and CI _ 0. This is an assumption that there exist while-programs

which satisfy the specifications S and bn. Since we are constructing an example of an idealized

development, these assumptions are reasonable restrictions on the specifications. There are four

possibilities for Ct, depending upon the four kinds of transformation from {p} {q} to {p} S 1 {q}.

In this section we will introduce conditions under which it is possible to guarantee that a while-

program W E L_w is in C f) C I. As a consequence of these conditions being satisfied, for each

transformation, T, and for each such while-program W, W is partially correct with respect to $1

and S.

Definition: ( Specification Transformations -- special case ) A transformation, T, from a

specification, S, which is an unknown statement specification, {p} {q}, where p, q are formulas

from WFF m to another specification, 5_, which is the image under T, of S, is defined as follows:

a) Assignment statement transformation If z is a variable from V, and t is a term from T8,

48
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then

T: {p} {q} _ {p} z := t{q}.

b) Composed statement transformation If p_, p2, ql, q2 are formulas from WFFB, and {Pl}

{ql} and {p_} {q2} are specifications, then

T: {p} {q} -'* {p} {Pl} {ql} ; {P2} {q2} {q}"

c) Conditional statement transformation If Pl, Pz, ql, q2 are formulas from WFFB, and [Pl}

{ql} and {p_/{qg} are specifications, and e is a quantifier free formula from QFFB, then

T: {p} {q} --* [p} lie then {Pl} {ql} else {p_} {q_} fi {q}.

d) While statement transformation If Pv ql are formulas from WFFn, {Pl} {ql} is a

specification, and e is a quantifier free formula from QFFB, then

T: {p} {q} ---* {p) while e do {Pl} {ql} od {q}.

We note that the pre- and post-conditions associated with both $ and SI are p and q. Thus,

the transformation,

T: S--, _,

preserves pre- and post--conditions.

The four lemmas which follow give conditions under which it is possible to have derivations

of specific kinds of Hoare formulas. Each of these Hoare formulas is closely related to one of the

four kinds of specification transformations. We call these conditions proof rules, since they are

sufficient to guarantee the existence of derivations in the Hoare calculus which wilt lead to a

correct development step.

Lemma: ( Assignment Statement Derivation ) Let T: 5 _ 5_ be an assignment statement

transformation,

50
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T: {p} {q} _ {p} z := t {q}.

Let W ELSw .Suppose that Wis z := tfor some xEV and tET B. Let p, qbe formulas from

WFF B and let {p} lq} be a specification from L_. Furthermore, assume that there exists a

derivation of the following formula from the theory of the interpretation I:

a) p ==> 4"

Then W E C MC I.

Proof: We first prove that W E C. Since p ==_ q_, it is a consequence of the derived rule that

{p} z := t {q}; that is,

Th(2) [--- {p} z := t {q}.

ThereforeW E C.

If the following two conditions are satisfied

i) W is z := t

ii) Th(/) k- {p} W [q}

then

Th(. r) k--y {p} W {q}

and W E C I. Condition i) holds by assumption. Condition ii) is a consequence of a).

Definition: ( Assignment Statement Proof Rule -- special case ) Let T, W, x, t, p, q, 2", and

condition a) be as in the preceding lemma. Then a) is called an assignment statement proof rule.

The preceding lemma shows that partialcorrectnesswith respect to specificationsis

preservedby assignmentstatement transformationsifthe assignment statement proof ruleholds.

Lemma: ( Composed StatementDerivation) Let T: S --*_ be a composed statement transfor-

marion,
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T: {p} {q_--+ {p} {Pl}{ql}; {P2}{q_}{q}.

Let W E LSw• Suppose that W is

W 1 ; W 2

for some W v W 2 E LB. Let p, Pl, P_, q, ql, q2 be formulas from WFFB, and {p} {q}, {Pl} {ql},

and {P2} {q_ be specifications from LsB. Furthermore, assume that there exists a derivation of

the following formulas from the theory of the interpretation I:

a) p=_ Pl

b) ql ==_ Pm

c) qg. =_ q

d) {PI_ Wl {ql} for some W 1 E Lg

e) {pz_ W 2 {q_} for some W_ E LBw•

Then W E C N C _.

Proof: From the formulas ql ==_ qv P ==_ Pl, and {p} W 1 {q}, it follows from rule (v) that {p}

Wl {ql}. Similarly, from ql ==_ Pz, qz ==_ q, and {p_} W_ {q2}, it follows from rule (v) that {ql}

Wz {qb From {pl W 1 {ql} and {q_} Wz {q_ it follows from rule (ii) that {p_ W 1 ; W 2 {q}; that is,

Th(_ k" {P} Wl;W2 [q}.

It follows that W E C.

Let SIbe [Pl}{ql}and Szbe [p_}{qs}-If the following hold

i) W is W 1 ; W z for some Wl, W 2 E L_

ii) Th(2) }-- ' '_p, W {q}

52



July 29, X986

iii) Th(_ __sl {Pl/ W1 {ql}

iv) Th(!) [_.s, IP2,"_ W2 {q2}

then

DRAFT

Th(]) _-¢ {pl W {q}

and W E G'. Condition i) holds by assumption. Condition ii) is a consequence of a) - e). Condi-

tion iii) follows from d) and the fact that

Th(]) ].__s, {Pl} Wl {ql}

Th(/) _-- {Pl} Wl {ql}"

is

Condition iv) follows from e) and the fact that

Th(/) _.._st {P2} W_ {qg}

Th(_ [-- {p_} W_ {q_}.

is

Definition: ( Composed Statement Proof Rules -- special case ) Let T, W, Wl, W2, p, Pl' P2'

q, ql, q2, _ and conditions a)- e) be as in the preceding lemma. Then a) - e) are called composed

statement proof rules.

The preceding lemma shows that partial correctness with respect to specifications is

preserved by composed statement transformations if the composed statement proof rules hold.

Lemma: ( Conditional Statement Derivation ) Let T: $ --* 5_ be a conditional statement

transformation,

T: {p_ {q_ ---* {p_ ire then _Pl} {ql} else {P2} {q2} fi {q_"

Let W E LB. Suppose that W is

ire then W 1 else W 2 fi
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for some quantifier free formula e from QFF B and some W1, W 2 E LwB. Let p, Pl, P2, q, ql, qs be

formulas from WFFB, and let {p} {q}, {Pl} {ql}, and {P2} {q2} be specifications from LB. Furth-

ermore, assume that there exists a derivation of the following formulas from the theory of the

interpretation 2":

a) p A e =:_ Pl

b) ql =_ q

c) p A --, e =_ Ps

d) q2 =_ q

e) {Pl} w_ {q_}

f) {Pz} W2 {q21"

Then W E C A C _.

Proof: Since p A -_ e =_ ps, {p2} W 2 {qs}, and qs =_> q, it follows from rule (v) that {p A -1 e}

Ws {q}. Similarly, _ e} W 1IP A {q} follows from p A e :=_ Pl, {Pl} W1 {ql}, ql =#> q, and rule (v).

Using the fact that {p A e} W 1 {q} and {p A -_ e} W s {q}, it follows from rule (iii) that

{p} lie then W I else W: {q};

ghat is,

Th(]) _-- {p} if e then W1else Ws {q}.

Therefore W E C.

Let $1 be {Pl} {ql} and $2 be {Ps} {q2}" If the following four conditions hold

i) W is fie then W 1 else W2 a for some Wl, W 2 E LBw
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ii) Th(_ _ {p} W {q}

iii) Th(2") I---s_'l Pl ,t Wl {ql}

iv) Th(I) }_h {P2} W2 {q2}

then

Th(I) [---g {p} W {q}

and W E C I. Condition i) holds by assumption. Condition ii) is a consequence of a) - f).

tion iii) follows from e) and the fact that

Th(.r) j.__sx{Pl} Wl (ql}

is

Th(I) b" {Pl} Wx {qt}"

Condition iv) follows from f) and the fact that

Th(_ [..s, {P2} W2 {q2}

is

Condi-

Th(!) ]--- {p_} W 2 {q2}"

Definition: ( Conditional Statement Proof Rules -- special case )

q, ql, q2, e, I, and conditions a) - f) be as in the preceding lemma.

tional statement proof rules.

The preceding lemma shows

preserved by conditional statement transformations if the conditional statement proof rules hold.

Lernrna: ( While Statement Derivation ) Let T: $ _ _ be a while statement transformation,

T: {p} {q} _ {p} while e do {Pl} {ql} od {q}.

Let W E LB. Suppose that W is

Let T, W, Wx, W2, p, Pl, P2,

Then a) - f) are called condi-

that partial correctness with respect to specifications is
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while e do W 1 od

for some quantifier free formula e from QFFB, and some W 1 E L B. Let p, Pl, q, ql be formulas

from WFFB, and let {p} {q}, and {Pl} {ql} be specifications from Lsn. Furthermore, assume that

there exists a derivation of the following formulas from the theory of the interpretation r:

a) p A _e=_ q

b

L

L

I
I

I

I

I
i

i

I
i

b) p A e _ Pl

c) ql ==_>P

d) {Pl} Wl {ql} for some W I E LB.

Then W E C N C I.

Proof: We first prove that W E C. From the formulas p A • ==3>Pl, ql =:_ P, and {Pl} Wl {ql},

it follows from rule (v) that {p A e} W I {p}. From {p A e} W I {p} axld rule (iii) we obtain

{p}whilee doWl od{p^ _ e}.

Since p ==_>p, p ^ _ e =_ q, and {p} while e do W 1 od {p ^ -_ e}, it follows from rule (v) that

{p} while e do W 1 od {q}.

Therefore, we have

It follows that WE C.

Th(]) [-- {p} while • do W 1 od {q}.

Let'S1 be {Pi} {qi}: If the following hold

i) W is while e do W t od for some W t E L_.

ii) Th(/) f-- {p} W {q}
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iii) Th(J) F-s'' _PlJ Wl {ql}

then

Th(/) I--_ {p} W {q}

and W E C I. Condition i) holds by assumption. Condition iii) follows from d) and the fact that

Th(/) [.s, {Pl} Wl {ql}

is

Th(/) _-- {Pl} Wl {ql}"

DRAFT

Condition ii) is a consequence of a) - d).

Definition: ( While Statement Proof Rules -- special case ) Let T, W, Wl, e, p, Pl, q, ql, I,

and conditions a) - d) he as in the preceding lemma. Then a) - d) are called while statement

proof rules.

The preceding lemma shows that partial correctness with respect to specifications is

preserved by while statement transformations if the while statement proof rules hold.

Definition: ( Proof Rules -- special case ) The assignment statement, composed statement,

conditional statement, and while statement proof rules are called proof rules (for the specification

We combine the result_ of the lemmas of this section to obtain the following two theorems.

Theorem: ( Development Step -- special case ) Let $ be an unknown statement specification,

{p} [q}. Let T be any one of the four possible kinds of transformations,

T: 5-* Y,

such that S I is the specification, /p_ 51 {q}, and $1 is either an assignment statement specification,

a composed statement specification, a conditional statement specification, or a while statement

specification. Let C be
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and let C I be

/ W E LBwI Th{.r) }_.s/Pl W {q} }

DRAFT

{ W E LSwITh(1) I-y {p} W {q} }.

Assume that C # _ and C' _ _ and that the proof rules (for the specification {p} {q}) hold.

Then ($, C) and (b_, C I) are abstract programs and for some W E L_, W E C n c'.

Proof: From the theorem of section 4.2 it follows that ($, C), (b_, C$) are abstract programs.

The fact that W E C N CI for some W E Lws follows from the four preceding lemmas.

Theorem: ( Development Step Correctness -- special case ) Let $ be an unknown statement

specification, _Pl {q}. Let T be any one of the four possible kinds of transformations,

T: $--_ Y,

such that b_ is the specification, {p} $1 {q}, and $1 is either an assignment statement specification,

a composed statement specification, a conditional statement specification, or a while statement

specification. Let C be

{ W E L_ ITh(_ }._s {p} W {q} }

and let C I be

{ W E LawI Th(/) }--Y {p} W {q} }.

Assume that C' C_ C, C' y_ O, and that the proof rules (for the specification {p} /q}) hold.

(S, C) and (_, C') are abstract programs and

Then

((s, c), (s', c,))

is a correct development step.

Proof: From the preceding theorem (5, C) and (b_, C') are abstract programs. Since C' is a sub-

set of C and CI # O, the theorem follows from the definition of a correct development step.

In section 5.5 we prove that the existence of a specification transformation implies that C _ ___

C, not only for the class of specification transformations which we consider in this section, but
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for a more general class of specification transformations.

5.3. Specification Transformations

B
Let S E L{p}{q}, so that $ is a specification which contains the unknown specification {p_ {q).

The specification transformations, which we define next, are transformations of specifications,

which contain unknown specifications, to specifications. These are a generalization of the

specification transformations defined for unknown specifications.

Definition: ( Specification Transformations -- general case ) Let S E L{D} {q} and let pl, ql be

the pre- and post-conditions asssociated with $. A transformation, T, of the specification, 5,

which is a specification containing the unknown specification,

{P} {q},

where p, q are formulas from WFFB, to another specification, St, which is the image of 5 under T

is defined inductively as follows:

a) Assignment statement transformation Let x be a variable from V, and t a term from TB.

(i) If 5 is the unknown specification,

then Y is

(ii) If 5 is a composed specification,

for some specifications

specification,

If St contains {p}

{P} {q},

{p} z :----t {q}.

{P'} $1; $2 {ql},

S1, 52 from LsB, then either 51 or $2 contains the unknown

[P} {q_.

{q}, then by the induction hypothesis, there exists an
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assignment statement transformation,

TI: S1 --_ $1 I.

Define T _Lsan extension of T t from S1 to S as follows:

T: {p'} St ; $3 {q_} "* {P'} It(St); S2 {q_}"

If S2 contains _p} _q}, then by the induction hypothesis there exists an assignment

statement transformation T z on 52- Let the transformation T on $ be defined as

the extension of the transformation T$ on S2 to S.

(iii) If S is a conditional specification,

{p'} if e then St else S2 fi {ql},

for some quantifier free formula e from QFFs, and some specifications St, 5 2 from

LsB, then either St or $3 contains the unknown specification,

{P} {q}.

If 51 contains {p} {q}, then by the induction hypothesis, there exists an assign-

ment statement transformation,

It: St "* St I-

Define T as an extension of T 1 from 51 to S as follows:

T: {p'} i]e then Sl else S2 fi {¢} "-* {p'} ire then Tl(S1) else 52 fi {¢}.

If S_ contains {p} {q}, then by the induction hypothesis there exists an assignment

statement transformation T2 on 5_. Let the transformation T on S be defined as

the extension of the transformation I s on S2 to S.

(iv) If 5 is a while specification,

{p'} while • do S10d {q'},

for some quantifier free formula e from QFFB, and some specification $1 from Ls_,

then $t contains the unknown specification,
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{P_ [q_.

By the induction hypothesis, there exists an assignment statement transformation,

TI: 51 --* 51'.

DefineT as an extensionofT Ifrom $I to $ as follows:

T:{p'}whileedoSlod{q'}-_ {p'}whileedoTI(Sl)od{q'}.

b) Composed statement transformation Let Pl, P2, ql, q2 be formulas from WFFB, and let

{Pl} {ql} and {P2} {q_} be specifications from Lsn. This part is similar to part a) except

that the basis for the induction is the composed statement transformation,

T: {p} {q} ---, {p} {91} {ql} ; {92} {q2} {q}"

c) Conditional statement transformation Let Px, P2, ql, q2 be formulas from WFFB, let {Px}

{qx} and {p2} {q_} be specifications from LsB, and let ex be a quantifier free formula from

QFF B. This part is similar to part a) except that the basis for the induction is the condi-

tional statement transformation,

T: {p_ {q} --_ {p} lye 1 then {Px} {ql) else {P2_ {q2} fi {q}"

d) While statement transformation Let Pl, ql be formulas from WFFB, let {Pl} {ql} be a

specification from LsB, and let e 1 be a quantifier free formula from QFF B. This part is

similar to part a) except that the basis for the induction is the while statement transfor-

mation,

T: {p} {q} _ {p} while e t do {Pl} {_} od {q}.

The definition just given for specification transformations is not quite precise enough, since

we really need a definition which defines a unique specification transformation for each occurrence

of the unknown specification,

61
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in the specification$. One way to handle thisisto distinguishbetween the occurrencesof the

unknown specificationin S. For example, iftherewere n occurrencesof the specification,

{P} {q},

label them {Pl jt tql}, {P_} {q2}, "-, {Pa} {qa}. For each i, 1 _ i _ n, a specification transforma_

tion of S is defined using the preceding definition, where $ contains a single occurrence of the

unknown specification,
i

{Pi} {qi}"

We note that if pl and q_ are the pre- and post-conditions associated with the specification

transformation,

T: $--* P,

then the pre- and post-conditions associated with g are also pl and ql.

5.4. The General Caae for Transformation Proof Rules

In this section we generalize the notion of proof rules for the unknown specification,

{P} {q},

to proof rules for specifications which contain the unknown specification {p} {q}. The definitions

for each of the four kinds of specification transformations are inductive and all are very similar

to one another. We include the definitions for proof rules for each kind of specification transfor-

mation for the sake of completeness.

Definition: ( Assignment Statement Pr0o_ Rtde -- general c_e ) Let S he a specification from

• LsB with pre- and post-conditions pl and ql. Suppose that $ contains the unknown specification,

{P}' {q}.

The assignment statement proof rule (for the specification {p} {q}) holds for $ is defined induc-

a2
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tively, the induction being on the specification S.

Basis

a) If S is the unknown specification,

{P} {q},

then, ifthe assignment statement proof rule (forthe specification{p) {q)) holds, the

assignment proofruleholds for S.

Induction step

b) If S is the composed specification,

{p'}sl;s2 {q'},

for some specifications $1, S9 from LsB, then either $1 or S_ E L{p} {q}. Assume that S1 E

L{p} {q}. If there exists an assignment statement specification transformation,

TI: $1 "* $1',

such that the assignment statement proof rule holds for $1, then the assignment state-

ment proof rule holds for $. If $2 E L{p} {u}' then the definition is similar.

c) If S is the conditional specification,

{p'} ire then $1 else S2 fi {q'},

for some quantifier free formula e from QFFD, and for some specifications Sz, $2 from LsB,

then either $1 or $2 E L{p} {q}. Assume that $1 E L{p} {q}. If there exists an assignment

statement specification transformation,

TI: Sl _ $1',

such that the assignment statement proof rule holds for $1, then the assignment state-

ment proof rule holds for $. If $2 E L{p} {q}, then the definition is similar.
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d) If S is the while specification,

Ip_} while e do $1 od {q_},

for some quantifier free formula e from QFFB, and for some specification $1 from LsB,

then S 1 E L{p} {q}. If there exists an assignment statement specification transformation,

Tx: Sl _ Sl',

such that the assignment statement proof rule holds for $1, then the assignment state-

ment proof rule holds for $.

Definition: ( Composed Statement Proof Rules -- general case ) Let $ be a specification from

L_ with pre- and post-conditions p_ and ql. Suppose that $ contains the unknown specification,

{P} {q}.

The composed statement proof rules (for the specification {p} {q}) hold for $ is defined induc-

tively, the induction being on the specification $.

Basis

a) If $ is the Unknown specification,

{P} {q},

then, if the composed statement proof rules (for the specification {p} {q}) hold, the com-

posed proof rules hold for $.

Induction step

b) If 5 is the composed specification,

{p'} s_; s2{q'},

for some specifications S1, 52 from LB, then either 51 or $9 E L{p} {q}. Assume that S1 E

L{p} {q}. If there exists an composed statement specification transformation,

TI: $1 -* $1I,

a4
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such that the composed statement proof rules hold for $1, then the composed statement

proof rules hold for S. If $2 E L{p} {q}, then the definition is similar.

c) If S is the conditional specification,

{p'} if e then S1 else S2 fi {q'},

for some quantifier free formula e from QFFe, and for some specifications $1, S9 from LsB,

then either S1 or S2 E L{p} {q}. Assume that Sx E L{p} {q}. If there exists an composed

statement specification transformation,

TI: S 1 .-_ S1 I,

such that the composed statement proof rules hold for Sx, then the composed statement

proof rules hold for $. If $_ E L{p} {q}, then the definition is similar.

d) If $ is the while specification,

{p'} while e do $x od {q_},

for some quantifier free formula e from QFFB, and for some specification $1 from LsB,

then S1 E L{p} {q}. If there exists an composed statement specification transformation,

TI: $1 -'_ $1I,

• such that the composed statement proof rules hold for $1, then the composed statement

proof rules hold for $.

Definition: ( Conditional Statement Proof Rules -- general ease ) Let $ be a specification from

LsB with pre- and post-conditions p_ and q_. Suppose that $ contains the unknown specification,

{P} {q}.

The conditional statement proof rules (for the specification {p} {q}) hold for S is defined induc-

tively, the induction being on the specification $.

Basis
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a) If $ is the unknown specification,

{p}_ ,tqJ,

then, if the conditional statement proof rules (for the specification (p} {q}) hold, the con-

ditional proof rules hold for $.

Induction step

b) If S is the composed specification,

{P'} $1;S_ {q'},

for some specifications $1, $2 from Lss, then either S1 or S: E L{p} {q}. Assume that Sl E

L{p} {q}. If there exists an conditional statement specification transformation,

TI: Sl _ $I',

such that the conditional statement proof rules hold for 51, then the conditional state-

ment proof rules hold for $. If $: E L{p} {q}, then the definition is similar.

c) If $ is the conditional specification,

{p'} if e thenS1 elseS2fi{q'},

for some quantifier free formula e from QFFB, and for some specifications $1, $2 from L_,

then either $1 or $= E L{p} {q}. Assume that $1 E L{p} {q}. If there exists an conditional

statement specification transformation,

TI: Sl "-_ Sl',

such that the conditional statement proof rules hold for 51, then the conditional state-

ment proof rules hold for 5. If 5: E L{p} {q}, then the definition is similar.

d) If $ is the while specification,

{p,}=bilee do s_od{q'},
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for some quantifier free formula e from QFFB, and for some specification 51 from L B,

then 51 E L{p} {q}. If there exists an conditional statement specification transformation,

TI: 51 --_ 51l,

such that the conditional statement proof rules hold for 5z, then the conditional state-

ment proof rules hold for 5.

Definition: ( While Statement Proof Rules -- general case ) Let 5 be a specification from Ls_

with pre- and post-conditions pl and ql. Suppose that 5 contains the unknown specification,

{P} {q}.

The while statement proof rules (for the specification {p} {q}) hold for S is defined inductively, the

induction being on the specification 5.

Basis

a) If 5 is the unknown specification,

{P} {q},

then, if the while statement proof rules (for the specification {p} {q}) hold, the while proof

rules hold for 5.

Induction step

b) If 5 is the composed specification,

{P'} 51 ; 52 {q'},

for some specifications 51, 52 from LsB, then either 51 or 52 E L{p} {q}. Assume that S1 E

L{p} {q}. If there exists an while statement specification transformation,

TI: 51 --, 51I,

such that the while statement proof rules hold for 51, then the while statement proof rules

hold for 5. If 52 E L{p} {q}, then the definition is similar.
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c) If 5 is the conditional specification,

{pl} ire then S1 else Sz fi {ql},

for some quantifier free formula e from QFFs, and for some specifications S1, S2 from LB,

then either S1 or $_ E L{p} {q}. Assume that $1 E L{p} {q}. If there exists an while state-

ment specification transformation,

TI: $1 "-_ Sl I,

such that the while statement proof rules hold for 51, then the while statement proof rules

hold for $. If Sz E L{p} {q}, then the definition is similar.

d) ff 8 is the while specification,

{p_} while e do Sx od {ql},

for some quantifier free formula e from QFFB, and for some specification S1 from Ls_,

then St E L{p} {q}. If there exists an while statement specification transformation,

TI: Sl SI',

such that the while statement proof rules hold for $1, then the while statement proof rules

hold for S.

Definition: ( Proof Rulee -- 9eneral case ) Let $ be a specification from L_ with pre- and

post-conditions p_ and q_. Suppose that $ contains the unknown specification,

{p}{q}.

If there is an assignment statement (composed statement, conditional statement, while state-

ment, respectively) transformation on $ such that the assignment statement (composed state-

ment, conditional statement, while statement, respectively) proof rules (for the specification {p}

{q}) hold for S, then the proof rules (for the specification {p} {q}) hold for $.
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5.5. Sets of Implementations Related by Set Inclusion

Let (S, C) be an abstract program and let (S t, C _) be the the abstract program obtained

from (S, C) by a specification transformation T from S to SI. In this section we prove that the

sets C and CI have the property that C I C C. This set inclusion relation on the implementations

is one of the requirements for a correct development step in the abstract model. This set inclu-

sion relation is an immediate consequence of the theorem which we prove in this section. The

theorem requires four lemmas and each lemma depends upon the kind of specification transfor-

mation, T, which is used to transform S to SI. Even though the proof of each of the lemmas is

rather involved due to the induction on the specifications, the basic idea for the proofs is simple.

Each proof can be summarized as follows: Any while-program which is partially correct with

respect to a given specification must also be partially correct with respect to a less detailed

specification, which is consistent with the given specification.

Lerrmaa: ( Correctness of Assignment Statement Implementations ) Let T be an assignment

statement transformation of the specification $, which contains the unknown specification,

{P_ {q},

where p, q are formulas from WFF e. Let 5_ be the image of S under T and let pS, q_ be the pre-

and post-conditions associated with $ and P. Let C be

{ W e LBwI Th(/) }...s {p,} W {ql} }

and let CI be

{ W E L_ I Th(/) ]--$' {p'} W {q_} }.

For each W E CI, W E C; that is, C I _ C.

Proof: The proof is by induction on the specification S. Associated with the specific assignment

statement transformation T is a variable x E V, and a term t from T B.
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a) If S is the unknown specification,

{P} {q},

DRAFT

then 51 is

If W E CI, then

{p} z := t {q}.

It follows that

(i) Wis=:-----t.

Th(.r) k--s' {p} W {q}.

I

I
I
I

(ii) Th(I) k-- {P} W {q}.

Conditions (i) and (ii) imply that

orW EC.

b) If $ is a composed specification,

Th(/) _._s {p} W {q}

{p'} Sl; S_ {4},

I
I

for some specifications 51, 52 from LsB, then either 51 or $2 E L{p} {q}. If 51 E L{p} {q}, then

5' is

{p'} Sl' ; S 2 {q'},

I

I

where 511 is the specification which is the image of $t under an assignment statement

transformation,

TI: S I _ Sl m.

I

I

Let W E C I. Since

Th(/) [...s' {p_} W {q_},

it follows that for some pre- and post,-conditions Pl, ql, and P2, q9 associated with S1 and

I $2, respectively, that
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(i) W is W 1 ; W 2 for some W1, W 2 C LBw•

(ii) Th(2_ _-- {p'} W [q'}.

(iii) Th(/) I--s'' {Pl} Wz {ql}.

(iv) Th(/) }_.s, {pg} W2 {qz}.

Using the induction hypothesis, if W 1 E L_ satisfies (iii), then

(v) Th(2_ __s_ {Pl} Wl {qz}"

It follows from (i), (ii), (iv), and (v) that

Th(/) I--s {p'} W {4}

or W E C. If we assume that 52 E L{p} {q}, then the proof is similar.

c) If S is a conditional specification,

{p'} i/e then Sl else S__ {q'},

for some quantifier free formula e from QFFB, and some specifications Sz, S2 from LsB,

then either S1 or S2 E L{p} {q}. If Sz E L{p} {q}, then SI is

{pl} if e then S11else S2 fi {ql},

where 51_ is the specification which is the image of $1 under an assignment statement

transformation,

Tz: $z "* $z"

Let W E C I. Since

Th(/) [--s' {p,} W {q_},

it follows that for some pre- and post-conditions Pl, qz, and P2, q2 associated with 51 and

52, respectively, that

(i) W is/re then W z else W 2 fi for some Wl, W 2 E L_.

(ii) Th(_ I--- {P_} W {q_}.
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(iii) Th(/) t-sl° {Pl} Wl {ql}.

(iv) Th(_ t-s' {P2} W2 {q2].

Using the induction hypothesis, if W: E L_ satisfies (iii), then

(v) Wh(/) F--s' [Pl} WI {ql}.

It follows from (i), (ii), (iv), and (v) that

Wh(/) _.._s {p,} W {q_}

or W E C. If we assume that $9 E L{p} {q}, then the proof is similar.

DRAFT

d) If 8 is a while specification,

{p,}whitee dosl od{q,},

for some specification $1 E L{p} {q}, and some quantifier free formula e from QFFB, then

is

{p,}whilee do sl' od {q'},

where $1_ is the specification which is the image of $1 under an assignment statement

transformation,

TI: $1 "" $1I"

Let W E CI. Since

Th(/) I--P {p'} W {q_},

it follows that for some pre-- and post--conditions Pl, ql associated with S1 that

(i) W is while e do W 1 od for some W t E L_.

{li)Th(/)_-- {p'}W {q'}.

(iii) Th(]) }-_I' {Pl} Wl {ql}"

Using the induction hypothesis, if W 1 E LBwsatisfies (iii), then

(iv) Wh(/) _s,r _Pl}Wl {ql}"
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It follows from (i), (ii), and (iv) that

Th(20 __..s {p,} W {q'}

orW EC.

Lemma: ( Correctness of Composed Statement Implementations ) Let T be an composed state-

ment transformation of the specification $, which contains the unknown specification,

{P} {q},

where p, q are formulas from WFF B. Let 51be the image of $ under Tand letpl,qlbe the pre-

and post-conditionsassociatedwith S and P. Let C be

{ W E LBwI Th(20 [_._s {p,} W {q'} }

and let CI be

{ W _ LBwI Th(20 _ {p'} W {q'} }.

For eachWEC I, w E c; that is, C °C_C.

Proof: The proof is by induction on the specification $. Associated with the composed state-

ment transformation T are formulas Pl, P2, qx, q3 from WFFB, and the specifications, {Pl_ {ql}

and IP2}{q2LfromLsB.

a) If S is the unknown specification,

then 5tis

{P} {q},

{P} $1; $3 {q},

where 5x is {Px} {ql} and 53 is {P3} {q3}" If W E C', then

Th(20 I-- s_ {p } W {q}.

It follows that

(i) W is W 1 ; W 3 for some Wl, W 3 E LBw•
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(ii) Th(/) [-- {p} W {q}.

(iii) Th(/) ]__s, {Pl} Wl {ql}.

(iv) Th(I)]_.st {P2} W2 {q2}.

a consequenceof (i)- (iv),it f011owsthat

Th(/) }_..s {p} W {q}

orWEC.

b) If $ is a composed specification,

{P'} Sa; $4 {qS},

for some specifications Sa, 54 from LsB, then either Sa or 54 E L(p} {q}. If 5 a E L{p} (q}, then

Y is

{p'}s3';s, {q'},

where 531 is the specification which is the image of 53 under a composed statement

transformation,

T3:53_ S3'.

Let W E Ct. Since

Th(I) }--_ (p'} W (4},

it follows that for some pre- and post-conditions Pa, q_, and P4, q4 associated with 53 and

54, respectively,

(i) W is W 3 ; W 4 for some W3, W 4 E L_v.

(ii) Th(]) _- {p_} W {q_}.

(iii) Th(_ __s,' {Pa} Wa {%}.

(iv) Th(/) __.S, _P4} W4 (q4}"

Using the induction hypothesis, if W 3 E LBwsatisfies (iii), then
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(v) Th(2) [__s, {Ps} Ws {qal.

It follows from (i), (ii), (iv), and (v) that

Th(_ [__s {p,} W {q'}.

or W E C. If we assume that 54 E L{p} {q}, then the proof is similar.

c) If $ is a conditional specification,

{p'} i/e I then Sa else 54 fi {q'},

for some specifications 5a, 54 from Ls8, and some quantifier free formula e1 from QFFs,

then either 5a or 54 E L{p} {q}. If 53 E L{p} {q}, then 5! is

{p'_i/el then S3'else S4fi {q'},

where 5aI is the specification which is the image of 5a under the composed statement

transformation,

%: Ss _ Sa'.

Let W E C _. Since

Th(_ __s' {p,} W {q_},

it follows that for some pre- and post-conditions Ps, qs, and P4, q4 associated with 53 and

54, respectively,

(i) W is if e I then W a else W 4 fi for some Ws, W 4 E LBw•

(ii) Th(2)[--- {p_} W {q_}.

(iii) Th(2) k--s*' {Ps} Ws {qa}.

(iv) Th(_ [_s, {P4} W, {at}.

Using the induction hypothesis, if W a E Lg satisfies (iii), then

(v) Th(/)[._s, {Ps} Ws {oh}.

It follows from (i), (ii), (iv), and (v) that
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Th(I) [._s {p,} W {q'}.

or W E C. If we assume that 54 E L{p} {q}, then the proof is similar.

d) If 5 is a while specification,

{p'} white eI do S3 od {q'},

for some specification 53 from Lss, and some quantifier free formula e I from QFFB, then $1

is

{p'} while eI do S3, od {q'},

where 53t is the specification which is the image of S3 under the composed statement

transformation,

%"S3-+ S3'.

Let W E C I. Since

Th(_ _--_ {p'} W {ql},

it follows that for pre- and post-conditions Ps, qs associated with 53

(i) W is while e1 do W 3 od for some W 3 E L_.

(ii) Th(I) I--- {p'} W {q_}.

(iii) Th(_ }--s" {Pz} Wz {qs}-

Using the induction hypothesis, if W s E LB satisfies (iii), then

(iv) Th(_ I--s' {Ps} W3 {qs}.

It followsfrom (i), (ii), and (iv) that

orWEC.

Th(_ }...s {p,} W {q_}.

Lemma: ( Correctness of Conditional Statement Implementation8 ) Let T be a conditional

statement transformation of the specification $, which contains the unknown specification,
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[P} {q},

where p, q are formulas from WFF B. Let _ be the image of $ under T and let pl, ql be the pre-

and post-conditions associated with 5 and $1. Let G be

{ W E LB I Th(/} [__s {p,} W {q'} }

and letC lbe

{ W E LB I Th(/) _s' {p,} W {q'} }.

For each W E C I, W E C; that is, CI C C.

Proof: The proof is by induction on the specification 5. Associated with the conditional state-

" ment transformation T are the quantifier free formula e from QFFB, the formulas Pl, P2, ql, qs

from WFFB, and the specifications, {Pl} {ql} and {ps} {q2}, from LsB. Let 51 be {Pl} {ql} and let

Sz be _P2) {q2}"

a) If S is the unknown specification,

then 5'is

IfW E C I, then

Itfollowsthat

{P} {q},

(p} i[e then $1 else $2 fi (q}"

Th(/) I---s' {p} W {q}.

(i) W is if e then W 1 else W 2 fi for some Wl, W 2 E L B.

(ii) Th(/) F-- {P} W {q}.

(iii) Th(/) F--sl [Pl} Wl _ql_.'

(iv) Th(_ I---s' {P2} W2 {q2}.

As a consequence of (i) - (iv), it follows that
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or WEC.

Th(2") ___s (p} W {q}

DRAFT

b) If $ is a composed specification,

{P'} $3;$, {4},

for some specifications 5a, $4 from LsB, then either 53 or 54 E L{p} {q}. If 54 E L{p} {q}, then

5' is

{p'} Sa ; 5,' {q'},

where $4' is the specification which is the image of S 4 under the conditional statement

transformation,

T,: $4 --* 5,'.

Let W E CI. Since

Th(,r) _--Y {p'} W {ql},

it follows that for some pre- and post-conditions P3, qa, and Pv q4 associated with 53 and

$4, respectively,

(i) W is W 3 ; W, for some W3, W, E L_.

(ii) Th(.r) [-- {p'} W {q'}.

(iii) Th(/) I--s' {Pa} Wa {%}.

(iv) Th(./) I--sg {p,} W, {q4}.

Using the induction hypothesis, if W 4 E L_v satisfies (iv), then

(v) Th(/) [...s_ {Pt} W4 {_}"

It follows from (i), (ii), (iii), and (v) that

Th(/) [_s[p,} W {q'}.

or W E C. If we assume that $3 E L{p} {q}, then the proof is similar.
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c) If S is a conditional specification,

.{pl} ifez then $3 else $4 fi lqt},

for some specifications 5s, 54 from LsB, and some quantifier free formula e1 from QFFB,

then either 53 or 54 E L{p} {q}. If $4 E L{p} {q}, then b_ is

{p'}/fe I then Ss else 54' fi {q'},

where 541 is the specification which is the image of $4 under the conditional statement

transformation,

T4:54 -'* 54'.

Let W E C I. Since

Th(/) }--$' {p'} W {q_},

it follows that for some pre- and post-conditions P3, oh, and P4, q4 associated with 53 and

54, respectively,

(i) W is /f e I then W a else W 4 fi for some Wj, W 4 E LBw•

(ii) Th(/) }--- {p_} W {q_}.

(iii) Th(_ [._as {PJ} W3 {%}.

(iv) Th(/) [._sg {p_} W4 {q4}"

Using the induction hypothesis, if W 4 E L_ satisfies (iv), then

(v) Th(/)__..s, {P4} W4 {q4}"

It follows from (i), (ii), (iii), and (v) that

Th(]) }...s {p,} W {q'}.

or W E C. If we assume that 5a E L{p} {q}, then the proof is similar.

d) If 5 is a while specification,
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for some specification S3 from Ls_, and some quantifier free formula eI from QFFB, then S'

is

{p'_ while e1 do $3tod {ql},

where $31 is the specification which is the image of $3 under the conditional statement

transformation,

T3:S3 "* S3'"

Let W E C I. Since

Th(/) I-s' [p'} W {q_},

it follows that for pre- and post-conditions P3, ch associated with $3

(i) W is while e1 do W aod for some W a E LBW.

(ii) Th(/) I-- {P_} W {q_}.

(iii) Th(/) i--s' {P3} W3 {qa}.

Using the induction hypothesis, if Ws E LSwsatisfies (iii), then

(iv) Th(/) __s, {Ps} Ws {%_"

It follows from (i), (ii), and (iv) that

Th(_ }. s {p,} W [q'}.

or WEC.

Lemma: ( Correctness o.f While Statement Implementations ) Let T be a while statement

transformation of the specification $, which contains the unknown specification,

{P} {q},

where p, q are formulas from WFFn. Let b_ be the image of 5 under T and let pl, ql be the pre-

and post-conditions associated with 5 and Y. Let C be

{ W E LSw Th(/)[_.s {p_} W {q_} }

and let C I be
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', W E LB I Th(_ _..s' {p,} W {q'} }.

For each W E CI, W E C; that is, C I C_ C.

Proof: The proof is by induction on the specification 5. Associated with the specific while state-

ment transformation T are formulas Pl, ql from WFFB, a specification {Pl} {ql} from LB, and a

quantifier free formula e from QFFB: Let $1 be {Pl) {ql)"

a) If S is the unknown specification,

then 51is

If W E C I, then

It follows that

{p}{q},

{p} while e do $I od {q}.

Th(.7) F'- y {P } W {q}.

(i) W is while e do W 1 od {q} for some W 1 • LB.

(ii) Th(/) [-- {p} W {q}.

(iii) Th(/) F--s_ {Pl} Wl {ql}"

As a consequence of (i) - (iii), it follows that

Th(]) I---s {p} W {q}

or WEC.

b) If S is a composed specification,

{P'} Sa; $4 {q'},

for some specifications 5s, 54 from LsB, then either 53 or 54 E L{p} {q}.

Slis

IfSs E L{p}{q},then

{p') SS'; S4 {q'},
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where 531is the specification which is the image of $3 under a while statement transforma-

tion,

T3:53 "_ 53"

Let W E C'. Since

Th(O _--Y {p'} W {ql},

it follows that for some pre- and post-conditions P3, oh, and P4, q4 associated with 53 and

S4, respectively,

(i) W is W 3 ; W 4 for some W3, W 4 E LBw•

(ii) Th(I) I--- IP'J W {q'l.

(iii) Th(O F--s_' {P3J W3 {%}.

(iv)Th(X)_s' _ _ ,IP41 W4 tq4J"

Using the induction hypothesis, if W 3 E L_ satisfies (iii), then

(v) Th(_ }__s, {P3} Ws {q4}.

It follows from (i), (ii), (iv), and (v) that

Th(/) }_S {p,} W {q'}.

or W E C. If we assume that 54 E L{p} h}' then the proof is similar.

c) If 5 is a conditional specification,

{p'} ire I then $3 else $4 fi {qt},

for some specifications $3, $t from L_, and some quantifier free formula e1 from QFFB,

then either 53 or 54 E L{p} {q}. If $a E L{p} (q}, then $1 is

{p'} ireI then $3' else 54 fi {q'},

where 531 is the specification which is the image of Ss under a while statement transforma-

tion,
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Let W E Cl. Since

T3:S3 "" S3I.

Th(/) F-y {p'} W {ql},

it follows that for some pre- and post-conditions P3, %, and Pv q4 associated with $3 and

$4, respectively,

(i) W is ff el then W 3 else W 4 fi for some W3, W 4 E LBw•

(ii) Th(/) t-- {P_} W (q_.

(iii) Th(.r) I---s' {P3} W3 {q3}-

(iv) Th(/) _.__S,{p,} W_ {q4}-

Using the induction hypothesis, if W 3 E L_ satisfies (iv), then

(v) Th(/)t -s' {Pz} W3 {%}.

It follows from (i), (ii), (iv), and (v) that

Th(/) F---s {p_} W {q_}.

or W E C. If we assume that $4 E L{p} {q}, then the proof is similar.

d) If S is a while specification,

{p'}whileel dos3 od(q'},

for some specification S3 from LsB, and some quantifier free formula e1 from QFFe, then $1

is

{p'} while e t do S3' od {ql},

where $31is the specification which is the image of $3 under a while statement transforma-

tion,

Let W E C _. Since

T3: S_ _ $3I.
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Th(/) I-g {p'} W _q'},

it follows that for pre- and post-conditions P3, % associated with S3

(i) W is while eI do W 3 od for some W 3 E LBw•

(ii) Th(/) _ r_,,le,W {q'}.

(iii) Wh(/) I--s'° {P31 W3 {%}.

Using the induction hypothesis, if W 3 E LBwsatisfies (iii), then

(iv) Wh(/) _s, {P3} W3 {%}.

It follows from (i), (ii), and (iv) that

Th(r) _.s {p,} W {q'}.

DRAFT

or WEC.

Theorem: ( Transformations on Specifications Containing Unknown Specifications ) Let ($, C)

be an abstract program. Assume that $ is a specification from L{Sp}{q};that is, $ contains the

unknown specification,

[P} {q},

and that p_, ql are the pre- and post-conditions associated with 8. Let C be the set

{ W ELg ITh(_ k--s {p_} W {q_} t.

Let T be a transformation from $ to _ which is either an assignment statement transformation,

a composed statement transformation, a conditional statement transformation, or a while state-

ment transformation. Let C I be the set

{ W E Lws I Th(O [--Y {p'} W {q'} }.

For each W E C I, W E C; that is, C I ___C.

Proof: The proof is an immediate consequence of the preceding four lemmas.

Theorem: ( Development Step -- general case ) Let ($, C) be an abstract program. Assume

s • that is, S contains the unknown specification,that S is a specification from L{p} {q},
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and C is

(P} {q},

DRAFT

{ W E Lg I Th(_ __s {p,} W {q'} }.

Let T be a transformation from S to Si which is either an assignment statement transformation,

a composed statement transformation, a conditional statement transformation, or a while state-

ment transformation. Let C t be the set

{W G LSw I Th(/) I--s' {p'} W {¢} }.

Then (5 I, CI) is an abstract program and the pair of abstract programs,

((s, c), (s,, c,)),

is a development step with the property that C I C C.

Proof: This is an immediate consequence of the theorem on the construction of a new abstract

program and the preceding theorem.

Theorem: ( Development Step Correctness -- general case ) Let (S, C) be an abstract pro-

S

gram. Assume that $ is a specification from L{p}{q}, that is, $ contains the unknown

specification,

and C is

{p}{q},

{ W E L_ I Th(]) [_s {p,} W {ql} }.

Let T be a transformation from S to 5_ which is either an assignment statement transformation,

a composed statement transformation, a conditional statement transformation, or a while state-

ment transformation. Let C_ be the set

{ W G L_v I Wh(/)[.__s' {p,} W {q'} }.

and suppose that CI # O. Then (_, C I) is an abstract program and the pair of abstract pro-

grams,
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((s, c), (s,, c,)),

is a correct development step.

Proof: This is an immediate consequence of the preceding theorem and the definition of a

correct development step.

5.6. Obtaining an Implementation Usin 8 Proof Rules

In the preceding section, given an abstract program,

(s, c),

and a specification transformation,

we have a new abstract program,

for which

T: S _ Y,

(Y, C'),

((s, c), (y, c,))

is a development step with the property that CI C C. In order to use a development step in the

development of a program we need to start with a W E C, a transformation,

T: $--* Y,

and conditions ,which when satisfied, guarantee that W E C. This is the main result of this sec-

tion. The conditions are the proof rules which are given in section 5.4. In general, given W E C,

W $ C t since the set inclusion relation from section 5.5 is C I C C. The main theorem that we

prove in this section requires four lemmas, each lemma obtains the result for one of the four

kinds of specification transformations.

Lemma: ( Assignment Statement Implementations -- general case ) Let T be an assignment

statement transformation of the specification 5, which contains the unknown specification,

{P} {q},
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where p, q are formulas from WFF B. Let $1 be the image of S under T and let pl, ql be the pre-

and post-conditions associated with S and SI. Associated with the specific assignment statement

transformation T is a variable x E V, and a term t from T B. Let C be

{ W E L_ I Wh(/)I ---s (p') {q'} }

and let C _ be

{ W E L_ ITh(/)I -y {p'} {q'} }

If W E C and the assignment statement proof rule holds for $, then W E C t.

Proof: The proof is by induction on the specification S.

a) If S is the unknown specification,

then $' is

{P} (q},

{p} z := t {q}.

If

(i) W is • := t

(ii) Wh(2) k- Ip} z := t {q},

then W E CI. Condition (i) follows from the fact that T is an assignment statement

transformation from $ to .¢. Condition (ii) follows from the assumption that the assign-

ment statement proof rule holds for $.

b) If $ is a composed specification,

Ip'_ Sl ; S2 {q'},

for some specifications $1, S2 from L B, then either S1 or S2 E L{p} {q}.

L{p} {q}. The specification $1 is

{P'} TI(S1) ; $2 {q'},

Assume that $1 E
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where

TI: Sl "4" $I I

is an assignment statement transformation for which the assignment statement proof rule

holds for SI. Since W E C, it follows that for some pre- and post-conditions Pl, ql, and

P2, q2 associated with $I and $2, respectively, that

(i) W is W 1 ; W 2 for some Wl, W 2 E LB.

(ii) Th(])[-- {p_} W {q_}.

(iii) Th(/) }__s_ {Pl} W1 _ql}.

(iv) Th(1) I--s" {P2} W2 {q2}"

From (iii) and the induction hypothesis,

(v) Th(_ b-sl° {Pl} Wx {qx}.

It follows from (i), (ii), (iv), and (v)that

Th(_ [...s' {p_} W {q_}.

Therefore, W E C I. If we assume that $3 E L{p) {q}, then the proof is similar.

c) If S is a conditional specification,

{p'} i/e then $1 else $2 fi {q'},

for some quantifier free formula e from QFFB, and some specifications $I, S2 from LB,

then either S 1 or S 2 E L{p} {q}. If $1 E L{p} {q}, then _ is

{p'l i/e thenTI(Sl) else S2_ {q'},

where

TI: Sl _ Sl !

is an assignment statement transformation for which the assignment statement proof rule

holds for S r Since W E C, it follows that for some pre- and post-conditions Pl, ql, and
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P2, q2 associated with $1 and S2, respectively, that

(i) W is/)re then W 1 else W 2 fi for some Wl, W 2 E LB.

(ii) Th(/) _ {p'} W {4}.

(iii) Th(2) }---st {Pl} Wl {ql}-

(iv) Th(2) }--st {pg} W9 {qz}.

From (iii) and the induction hypothesis,

(v) Th(/) k-s/{Px} Wt {qx}-

It follows from (i), (ii), (iv), and (v) that

Th(/) I-s' {p_} W {q_}.

Therefore, W E C _. If we assume that $_ E L{p} {q}, then the proof is similar.

DRAFT

d) If S is a while specification,

{p_} while e do $1 od {q_},

for some specification $1 from LsB, and some quantifier free formula e from QFFB, then $1

is

{p'} while e do TI($1) od {q'},

where

Tl: $1 _ $1 l

is an assignment statement transformation for which the assignment statement proof rule

holds for S I. Since W C C, it follows that for some pre- and post-conditions Pl, ql associ-

ated wit_k SI, that

(i) W I is while e do W 1 od for some W 1 _ L B.

(ii) Th(/)I-- {P_} W {q'}.
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P2, q2 associated with 51 and 52, respectively, that

July 29.10(_ W is/)re then W 1 else W 2 fl for some Wl, W 2 E LBw•

(ii) Th(/) [--- {p'} W {¢_.

(iii) Th(./) [.._s_ {Pl} Wl [qx}.

(iv) Th(/) __.S, {Pg} W2 {q2}"

From (iii) and the induction hypothesis,

(v) Th(2) F--s'° {Pl} Wl {qx}.

It follows from (i), (ii), (iv), and (v) that

Th(2) ]--_ {p'} W {q_}.

Therefore, W E C I. If we assume that $2 E L{p} {q}, then the proof is similar.

DRAFT

d) If 8 is a while specification,

{pt} while e do $1 od {q'},

for some specification $1 from L_, and some quantifier free formula e from QFFB, then $r

is

where

{p'} while e do Tx(Sx) od {q'},

TI: 51 _ 51'

is an assignment statement transformation for which the assignment statement proof rule

holds for 51. Since W E C, it follows that for some pre- and post-conditions Pl, ql associ-

ated with $x, that

(i} W I is while e do W l od for some W t E Lg.

(ii) Th(/)[-- {p'} W {q'}.

(iii) Wh(/) [...s, {Pt} W1 {ql}.
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From (iii) and the induction hypothesis,

(iv)Wh(/) k--s''{PI_W1 {qxl.

It follows from (i), (ii), and (iv) that

Th(/) [...s' [p,} W {q'}

or W E C'.

Lemma: ( Composed Statement Implementations -- general case ) Let T be a composed state-

ment transformation of the specification $, which contains the unknown specification,

{P} {q},

where p, q are formulas from WFF s. Let 51be the image of $ under T and letpl,qlbe the pre-

and post-conditionsassociatedwith $ and Y. Associatedwith the specificcomposed statement

transformation, T, are formulas Pl, P_, ql, q2 from WFFB, and the specifications, {Pl} {qx} and

{P2_ {q_}, from LB. Let C be

{ W E L_ ITh(/)I ---s {pl} W {ql} }

and let C _be

{ W e L_ I Th(!) _--_ {p'} W {q'} }.

If W E C and the composed statement proof rules hold for $, then W E C_.

Proof-" The proof is by induction on the specification $.

a) If 5 is the unknown specification,

then Y is

{.P} {q},

{p} $1 ; S_ {q},

where 51 is {Pl} {qx} and $2 is {P2} {q_}" If

(i) WisW 1;w 2forsomewl,w 2EL_
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(ii) Th(/) J--.-{p} W {q}

(iii) Th(/) I--% _,Pt,'t Wl {ql}

(iv) Th(/) [_.st,,p2,1 W2 {q2/,

then W E C I. Condition (i) follows from the fact that T is a composed statement

transformation from $ to 5_. Conditions (ii) - (iv) are consequences of the composed

statement proof rules.

b) If $ is a composed specification,

{P'}33; $4 {q'},

for some specifications S3, S4 from Lss, then either S3 or 54 6 L{p} {q}. Assume that $3 6

L{p} {q}. The specification 5" is

{p'} T3($3) ; $, {q'},

where

T3:$3 --_53'

is a composed statement transformation for which the composed statement proof rules

hold for $3" Since W 6 C, it follows that for some pre- and post-conditions P3, _ and P4,

q4 associated with $3 and $4, respectively, that

(i) W is W 3 ; W 4 for some W3, W 4 6 LB.

(ii) Th(/)_- {p'} W {q'}.

(iii) Th(/)_..s, {P3} Wa {%}.

(iv) Th(_ _...s, {P4} W4 {%}"

Using the induction hypothesis, it follows from (iii) that

(v) Th(/)]._S,' {P3} Ws {%}"

It follows from conditions (i), (ii), (iv), and (v) that
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Therefore,W E C I.

Th(/) [--Y {p'} W {¢}.

If $4 E L{p} {q}, then the proof is similar.

c) If 5 is a conditional specification,

{p'} if ez then $3 else 54 fi {q'},

for some quantifier free formula ez from QFFB, and for some specifications 53, $ 4 from

LsB, then either S3 or 54 E L{p} {q}. Assume that 53 E L{p} {q}. The specification $ I is

{p'} _/e z then T3(53)else 54 fi {4},

where

W3: 5a --* 53'

is a composed statement transformation for which the composed statement proof rules

hold for 53. Since W E C, it follows that for some pre- and post-conditions P3, q3 and Pt,

q4 associated with 53 and $4, respectively, that

(i) W is if e I then W 3 else W l fi for some Wa, W t E LB.

(ii) Th(/)F-- {p'} W {q'}.

(tii) Wh(/)[__s, {P3} W3 {%}-

(iv) Wh(/) _...s, {P4} W4 {q4}"

Using the induction hypothesis, it follows from (iii) that

(v) Th(i) _s" {P3} W3 {qs}-

It follows from conditions (i), (ii), (iv), and (v) that

Th(/) _--_ {p'} W {q'}.

Therefore, W E C_. If 54 E L{p} {q}, then the proof is similar.

d) If S is a while specification,

{p'} while e z do $3 od {ql},
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and let C I be

{W e LB Th(/) }.._s' {p,} W {q'} }.

If W E C and the conditional statement proof rules hold for 5, then W E CI.

Proof: The proof is by induction on the specification 5.

a) If 5 is the unknown specification,

then 51 is

{p}{q},

{p}fie then 51 el,e 5z//{q},

where 5z is {Pz} {ql} and 5_ is {P2} {q_}. If

(i) W is ire then W 1 else W 2fi for some Wl, W 2 E L_

(ii) Wh(/)I-- {P} W {q}

(iii) Th(/} I---s' {Pz} Wz {qz}

(iv) Th(_ __s, {p_} Wz {q_},

then W E C I. Condition (i) follows from the fact that T is a conditional statement

transformation from 5 to 5'. Conditions (ii) - (iv) are consequences of the conditional

statement proof rules.

b) If 5 is a composed specification,

{p'} 53; 5, {q'},

for some specifications 53, 54 from Lss, then either 53 or 54 C L{p} h}.

L{p} h}" The specification _ is

{p'} T3(Sa) ; 54 {q'},

where

T3:53 -'* 53'

Assume that 53 C
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is a conditional statement transformation for which the conditional statement proof rules

hold for $3. Since W E C, it follows that for some pre- and post-conditions P3, ch and P4,

q4 associated with 53 and 54, respectively, that

(i) W is W 3 ; W 4 for some W3, W 4 E L_.

(ii) Th(/)_-- {p'} W {q'}.

(iii) Th(/) __h {P3} W3 {%}"

(iv) Th(/)_s_ {P4} W4 {q4}"

Using the induction hypothesis, it follows from (iii) that

(v) Th(.7)F'-S"{P3}W3 {_}"

It follows from conditions (i), (ii), (iv), and (v) that

Th(/) _s' (p,} W {q'}.

Therefore, W E C'. If 54 E L{D} {q}, then the proof is similar.

c) If S is a conditional specification,

{p'} if eI then 53 else 54 fi {q'},

for some quantifier free formula ez from QFFB, and for some specifications S3, S4 from

LsB, then either S3 or S4 E L(p} (q}. Assume that 53 E L(p} {q}. The specification S' is

{p'} ire z then T3(53) else 54 fi {¢},

where

Ws: Ss -'-*53'

is a conditional statement transformation for which the conditional statement proof rules

hold for $3. Since W E C, it follows that for some pre- and post-conditions P3, qs and P4,

q4 associated with 53 and 54, respectively, that

(i) W is//e z then W 3 else W 4 fi for some W3, W 4 E Lg.
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(ii) Th(I) _- IP'} W {4}.

(iii) Th(/)[._s, {P3} W3 {%}.

(iv) Wh(.r)[_s, {P4} W4 {q4}.

Using the induction hypothesis, it follows from (iii) that

(v) Th(/) I--s/{Ps} Wa {%}.

It follows from conditions (i), (ii), (iv), and (v) that

Wh(2) }--Y (p'} W {q'}.

Therefore, W E C I. If 54 E L{p} {q}, then the proof is similar.

d) If 5 is a while specification,

{p'} while ez do Sa od {q'},

for some specification $a from L{p} {q}, and some quantifier free formula e I from QFFB,

then _ is

{p'} while eI do T3($a) od {q'},

where

Ta: 5a "* 53'

is a conditional statement transformation for which the conditional statement proof rules

hold for 53. Since W E C, it follows that for some pre- and post-conditions P3, ch associ-

ated with 53 that

(i) W is while e I do W 3 od for some W 3 E LBw•

(ii) Th(/)}'- {p'} W {q_}.

(iii) Th(.r} [--s' {Pa} W3 {qa}.

Using the induction hypothesis, it follows from (iii) that

(iv) Th(/) I-s/IP3', W3 {q3}"
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for some specification Ss from L{p} {q}, and some quantifier free formula e1 from QFFB,

then St is

_ll while ez do Ts(S3) od [ql},_.F' f

where

Ts: Ss -'* Ss'

is a composed statement transformation for which the composed statement proof rules

hold for S3. Since W E C, it follows that for some pre- and post-conditions P3, ch associ-

ated with S3 that

(i) W is while e1 do W 3 od for some W 3 E LB.

(ii) Th(/)}--- '-'t W r-'ttl J J /_l J,

(iii) Th(/) }__s, {_Ps}Ws {oh}.

Using the induction hypothesis, it follows from (iii) that

(iv) Wh(/) }...s,' {Ps} Ws {%}"

It follows from conditions (i), (ii), and (iv) that

Wh(/) }-- s' (p,} W {qt).

Therefore, W E C I.

Lemma: ( Conditional Statement Implementations -- general case ) Let T be a conditional

statement transformation of the specification $, which contains the unknown specification,

{P} {q},

where p, q are formulas from WFF B. Let $Ibe the image of S under T and let pl, ql be the pre-

and post-conditions associated with $ and Y. Associated with the specific composed statement

transformation, T, are formula._ Pl, P2, ql, °a from WFFB, the specifications, {Pl} {qt} and {P2}

Jtq2Jt from Ls8, and the quantifier free formula e from QFF B. Let C be

{ W E L_v I Th(I) k--s {pl) W {ql} }
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It follows from conditions (i), (ii), and (iv) that

Th(2) k-s' {p*} W {q*}.

Therefore, W E C'.

Lemma: ( While Statement Implementations -- general case ) Let T be a while statement

transformation of the specification 5, which contains the unknown specification,

{P} {q},

where p, q are formulas from WFF s. Let 5_ be the image of $ under T and let pl, ql be the pre-

and post-conditions associated with $ and Y. Associated with the specific while statement

transformation, T, are formulas Pl, P2 from WFFs, the specification, {Pl} {ql}, from LsB, and the

quantifier free formula e from QFF B. Let C be

{ W E L_v I Th(/) _s {p_} W {q_} }

and let C' be

{ W E Lg ITh(2") [...s' {p,} W {q'} }.

If W E C and the while statement proof rules hold for $, then W E C _.

Proof: The proof is by induction on the specification $.

a) If $ is the unknown specification,

then _ is

where $I is {Pl} {ql}" If

{P} {q},

{p} while e do $1 od {q},

(i) W is while e do W 1 od for some W 1 E Lg

(ii) Th(/)_-- {p} W {q}

(iii) Th(2) }.__sx{Pl} Wl {ql},
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then W E C I. Condition (i) follows from the fact that T is a while statement transforma-

tion from S to S_. Conditions (ii) and (iii) are consequences of the while statement proof

rules.

b) If $ is a composed specification,

{p'}S3; S4{q'},

for some specifications 53, S4 from L B, then either $s or 54 E L{p} {q}. Assume that $s E

L{p} {q}. The specification _ is

{P'} Ws($s) ; $, {4},

where

Ts: Ss _ Ss'

is a while statement transformation for which the while statement proof rules hold for Ss.

Since W E C, it follows that for some pre- and post-conditions Ps, qs and P4, % associ-

ated with Ss and $4, respectively, that

(i) W is W a ; W 4 for some Wa, W 4 E LBw•

(ii) Th(/)I-- {P'} W {q'}.

(iii) Th(.r} [ s, {P3} Ws {qa}.

(iv) Th(/) k-s' {P4} W4 [q4}.

Using the induction hypothesis, it follows from (iii) that

(v) Th(/) I--s" {Ps} Ws {%}"

It follows from conditions (i), (ii), (iv), and (v) that

Th(_ k--s' {p'} W {q'}.

Therefore, W E C F. If S4 E L{p} {q}, then the proof is similar.

c) If S is a conditional specification,
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{pl}ifel then$3 else$4fi{ql},

for some quantifierfreeformula eI from QFFB, and for some specifications$3, $4 from

LsB,then either$3or $4 E L{p}{q}.Assume that 53E L{p}{q}.The specificationSlis

{p'} i/e 1 then T3(S3) el, e $4 fi {q'},

where

%: & _ &'

is a while statement transformation for which the while statement proof rules hold for S3.

Since W E C, it follows that for some pre- and post-conditions P3, 0.3 and P4, q4 _soci-

ated with 53 and $4, respectively, that

(i) W is if e I then W 3 else W4 fi for some W3, W 4 E Lew•

(ii) Th(I)[-- {p'} W {q_}.

(iii) Th(])I ---s' {P3} W3 {oh}.

(iv) Th(])__.s, {p,} W, {q4}.

Using the induction hypothesis, it follows from (iii) that

(v) Th(/)_ s,' {P3} W3 {q3}.

It follows from conditions (i), (ii), (iv), and (v) that

Th(/) [---Y{p'}W {q'}.

Therefore,W E C*. If$_ E L(p}{q},then the proof issimilar.

d) If 8 is a while specification,

{p'} while eI do $3 od {q'},

for some specification $3 from L{p} {q}, and some quantifier free formula e I from QFFn,

then _ is

{P'/while ex do T3($3) od {q_},
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where

T3:S3 _ S3'

is a while statement transformation for which the while statement proof rules hold for $3"

Since W E C, it follows that for some pre- and post-conditions P3, ch associated with 5 3

that

(i) W is while ez do W 3 od for some W 3 E L_.

(ii) Th(_ }--- Ip I} W {qt}.

(iii) Th(2)k -s' {P3} W3 {%}.

Using the induction hypothesis, it follows from (iii) that

(iv) Th(2) k-s' {P3} W3 {q3}.

It follows from conditions (i), (ii), and (iv) that

Wh(/) _--Y {pt} W {q_}.

Therefore,W E CI.

Theorem: ( Construction of a New Abstract Program ) Let (5, C) be an abstract program.

B
Assume that S is a specification from L{p}{q}; that is, 5 contains the unknown specification,

{P} {q}.

Let T be a transformationfrom 5 to P which iseitheran assignment statement transformation,

a composed statement transformation,a conditionalstatement transformation,or a while state-

ment transformation.Let W E C be such that the proof rulescorrespondingfor 5 corresponding

to the transformationT hold. Let C lbe the set of implementations associatedwith P. Then W

E C I.

Proof: There axe four cases.Either T isan assignment statement transformation,a composed

statement transformation, a conditionalstatement transformation, or a while statement

transformation.In each case,itfollowsfrom one of the fourprecedinglemmas that W E CI.
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6. Conclusions

Need work here, especially with the implications of the proof rules.
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Abstract

The Vienna Development Method (VDM) supports the top-down development of software

specified in a notation suitable for formal verification. Components are first written using a com-

bination of conventional programming languages and predicate logic. These abstract components

are then incrementally refined into components in an implementation language. Each refinement

is verified before another is applied; therefore, the final components produced by the development

satisfy the original specifications. VDM has been used in industrial applications to enhance the

development process. In such environments VDM is applied in an informal, non-automated

manner; verification conditions are generated and certified without the aid of specialized tools,

and data types are not formally axiomatized. We propose that an automated environment sup-

porting a formal development method similar to "v'DM can be constructed, and that the environ-

ment will enhance the development method. For the thesis, we will design and build a prototype

environment, and demonstrate that it enhances the V'DM style development process. The en-

vironment will support the use of executable specifications and mechanical theorem proving, as

well as providing simple facilities for configuration control and project management.

1. Introductlon

It is widely acknowledged that producing correct software is both difficult and expensive. To help

remedy this situation, many methods for specifying and verifying software have been developed[10,17].

The SAGA (Software Automation, Generation and Administration) project is investigating both the for-

mal and practical aspects of providing automated support for the full range of software engineering activi-

ties[4,5]. ENCOMPASS[22,23] is an integrated environment to support the construction of software in a

manner similar to the Vienna Development Method[13]. PLEASE is the wide-spectrum, executable

specification and design language used in ENCOMPASS[24,25]. For the thesis, we will design and imple-

ment prototype versions of PLEASE and ENCOMPASS and demonstrate that they enhance the software

development process.
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The first step in the production of a software system is usually the creation of a specification which

describes the functions and properties of the desired system. We say that a specification is validated when

it is shown to correctly reflect the users' desires[8]. Producing a valid specification is a difficult task. The

users of the system may not really know what they want, and they may be unable to communicate their

desires to the development team. If the specification is in a formal notation it may be an ineffective

medium for communication with the customers, but natural language specifications are notoriously ambi-

guous and incomplete. Prototyping[ll,16] and the use of executable specification languages[14,27] have

been suggested as partial solutions to these problems. Providing the customers with prototypes for experi-

mentation and evaluation early in the development process may increase customer/developer communica-

tion and enhance the validation and design processes.

Even with a validated specification, producing a correct implementation is not an easy task. We say

that an implementation is verified when it is shown to satisfy the specification[8]. Many methodologies for

the design and development of correct implementations have been proposed[i,2,13,19]. For example, it has

been suggested that top-down development can help control the complexity of program construction. By

using stepwise refinement[26] to create a concrete implementation from an abstract specification we divide

the decisions necessary into smaller, more comprehensible groups.

The Vienna Development Method (VDM) supports the top-down development of programs specified

in a notation suitable for mathematical verification[13,21]. In this method, programs are first written in a

language combining elements from conventional programming languages and mathematics. A procedure

or function may be specified using pro- and post-conditions written in predicate logic; similarly, a data

type may have an in_ariant. These abstract programs are then incrementally refined into programs in an

implementation language. The refinements are performed one at a time, and each is verified before

another is applied; therefore, the final program produced by the development satisfies the original

specification.

ENCOMPASS is an environment being created by the SAGA project to provide automated support

for all aspects of a development method similar to VDM. We believe that neither testing[9,18], technical
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revlew[7],,or formal verlfication[17]alone can guarantee program correctness;therefore,ENCOMPASS

provides a framework in which allthree methods can be used as needed. ENCOMPASS includesa number

of differenttoolsincluding: a language-orientededitor;a testharness;a configurationcontroland project

management system; and a user interfacepackage. ENCON4__PASS isin the early stagesof development;

an initialprototype has been constructedand used to develop small programs. ENCOMPASS isdescribed

in more detailin [23],which isalso Appendix A of thispaper; early reportson the environment can be

found in[3,15,22].

PLEASE isthe wide-spectrum, executablespecificationlanguage used in ENCOMPASS. PLEASE

extends itsunderlying implementation, or base,language so that a procedure or function may be specified

with pre- and post-condltlonsand an implementation may be completely annotated. At present,allour

effortsinvolve Ada I as the base language. PLEASE specificationsmay be used in proofs of correctness;

they also may be transformed into prototypeswhich use Prolog[6]to "execute" pre- and post-condltions

and may interactwith other modules writtenin the base language. We believethat the early production

of executable prototypes for experimentation and evaluation willenhance the software development pro-

cess. PLEASE isdescribedin more detailin [24],which isalso Appendix B to this paper; a preliminary

reporton the language can be found in[25].

IDEAL is the programming-in-the-small environment used within ENCOMPASS[23]. IDEAL sup-

ports the specification,construction,validation,and verificationof singlemodules. It includesISLET, a

simple language-orientededitorwhich supports the creationofPLEASE specificationsand theirrefinement

into Ada implementations. As the specificationsare createdand refined,the syntax and semantics are con-

stantly checked. From IDEAL, the user can invoke commands to create Ada/Prolog prototypes from

PLEASE specifications.IDEAL also includesan interfaceto the ENCOMPASS testharness and TED, a

proof management system which isinterfacedto a number of theorem provers[12].

In sectiontwo of thispaper, we describethe development methodology which PLEASE, IDEAL, and

ENCOMPASS are designed to support and in sectionthree,we present a proposed thesisoutline. In sec-

_Ada isa trademarkoftheUS Government,Ada JointPro_am Of_ce.
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tion four, we give completion criteria for the thesis in section five, we summarize the proposed research

and expected results.

2. Software Development in ENCOMPASS

ENCOMPASS is based on a traditional or phased[8] life-cycle model extended to support executable

specifications and formal verification. In ENCOMPASS, a development passes through the phases: plan-

ning, requirements definition, validation, refinement and system integration. In the requirement8

definition pha_e, the functions and properties of the software to be produced by the development are deter-

mined[8]. In ENCOMPASS, software requirements specifications are a combination of natural language

and components specified in PLEASE. Although a software system may be shown to meet its specification,

this does not imply that the system satisfies the customers' requirements. [n ENCOMPASS, we extend the

traditional llfe-cycle to include a separate phase for customer validation.

The validation phase attempts to show that any system which satisfies the specification will also

satisfy the customers' requirements, that is, that the requirements specification is valid. If not, then the

requirements specification should be corrected before the development proceeds any further. To aid in the

validation process, the PLEASE components in the specification may be transformed into executable pro-

totypes which satisfy the specifications. These prototypes may be used in interactions with the customers;

they may be subjected to a series of tests, be delivered to the customers for experimentation and evalua-

tion, or be installed for production use on a trial basis. The use of prototypes may increase

customer/developer communication and enhance the validation process. If it is found that the

specification does not satisfy the customers, then it is revised, new prototypes are produced, and the vall-

dation process is reinitiated; this cycle is repeated until a validated specification is produced.

6
In general, this process does not guarantee that the specification is valid. The fact that the proto-

type does satisfy the customers means only that at least one implementation which satisfies the

specification is acceptable. For example, the post-condition for a procedure may hold true for an infinite

number of values while the prototype will only return one. We say the specification of a component is

complete if, for any input state, it is satisfied by only one output state. Although in some cases it is
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possible to require and verify that the specification of a component is complete, this is difficult in practice.

We believe that while prototypes may enhance the validation process, they do not replace communication

with the customers and review of the specification.

In the refinement phase, the validated specification is incrementally transformed into a program in

the implementation language; this process is viewed as the construction of a proof in the Hoare calculus.

In ENCOMPASS, the refinement process is supported by a language oriented editor similar to[20]. As the

specification is transformed into an implementation (and the proof is constructed) the syntax and seman-

tics are constantly checked. Many steps in the refinement will generate verification conditions in the

underlying first-order logic. These are algebraically simplified and then subjected to a number of simple

proof tactics. If these fail, the verification conditions are passed to TED, a proof management system

which is interfaced to a number of theorem provers[12]. In our experience, it is too expensive to mechani-

cally certify all of the verification conditions; therefore, the implementor can simply "check off" the

verification conditions for a refinement and continue. The verification conditions are recorded by

ENCOMPASS for use in project monitoring, management and debugging.

PLEASE specifications enhance the verification of system components using either testing or proof

techniques. The specification of a component can he transformed into a prototype. This prototype may be

used as a test oracle against which the implementation can be compared. Since the specification is formal,

proof techniques may be used which range from a very detailed, completely formal proof using mechanical

theorem proving to a development _annotated" with unproven verification conditions. PLEASE provides

a framework for the rigorous[13] development of programs. Although detailed mechanical proofs are not

required at every step, the framework is present so that they can be constructed if necessary. Parts of a

project may use detailed mechanical verification while other, less critical parts may be handled using less

expensive techniques.

8. Proposed Thesis Outllne

Figure 1 shows the proposed thesis outline. After the introductory comments, enough information

on first-order predicate logic and the resolution principle is given to make the thesis self contained. In the
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Figure 1. Proposed Thesis Outline
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previous work section, results on program specification and verification, logic programming, development

methods, llfe-cycle models and software engineering environments are given. In section four, both the

abstract syntax and semantics of the PLEASE language are defined. In section five, the methods used to

produce prototypes from PLEASE specifications are discussed, while in section six the use of these proto-

types in software validation is explored. Section seven discusses the incremental refinement of PLEASE

specifications into Ada implementations, while sections eight and nine discuss IDEAL and ENCOMPASS

respectively. Section ten briefly describes the implementation and section eleven contains a summary and

conclusions.

4. Completlon Crlterla

In the completed thesis, a prototype implementation of ENCOMPASS with the following features

will be described:
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• Rudimentary systems for object-oriented configuration control and project management.

• Tools to automaticallytranslatePLEASE specificationsintoAda/Prolog prototypes.

• A testharnesscompatible with both Ada implementations and PLEASE prototypes.

• A !anguage-orlentededitorto support the creationand refinement ofPLEASE specifications.

This prototype willsupport a preliminary subsetof PLEASE with the followingfeatures:

• A small, fixed set of types including natural numbers, lists, booleans and characters.

• The if-then-else, while and assignment statements.

• Procedure calls with in, out and in out parameters.

• User defined functions (without side effects).

• A facility supporting user-defined types specified using predicate logic.

Throughout the thesis, the emphasis will be placed on the theoretical basis and design of these corn-

ponents, rather than on the creation of production-quallty implementations. The emphasis will also be on

the programming-in-the-small aspects of the environment, rather than on the programming-in-the-large;

only an architecture for ENCOMPASS will be given, while IDEAL and PLEASE will be explained in

greater detail.

5. Summary

The Vienna Development Method (VDM) supports the top-down development of software specified

in a notation suitablefor formal verification.Components are firstwritten using a combination of conven-

tionalprogramming languages and predicate logic. These abstract components are then incrementally

refinedinto components in an implementation language. Each refinement is verifiedbefore another is

applied;therefore,the finalcomponents produced by the development satisfythe originalspecifications.

VDM has been used in industrialapplicationsto enhance the development process. [n such environments

V'DM isappliedin an informal,non-automated manner; verificationconditionsare generated and certified

without the aid of specializedtools,and data types are not formally axiomatized. We propose that an

automated environment supporting a formal development method similartoV'DM can be constructed,and

that the environment willenhance the development method. For the thesis,we will design and build a

prototype environment, and demonstrate that it enhances the V'DM style development process. The

environment willsupport the use of executablespecificationsand mechanical theorem proving, as well as

providing simple facilities for configuration control and project management.
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Absgract

ENCOMPASS is an integrated environment being constructed by the SAGA project to support

incremental software development in a manner similar to the Vienna Development Method. In

this paper, we describe the architecture of ENCOMPASS and give an example of software

development in the environment. In ENCOMPASS, software is modeled as entities which may

have relationships between them. These entities can be structured into complex hierarchies which

may be seen through different views. The configuration management system stores and structures

the components developed and used in a project, as well as providing a mechanism for controlling

access. The project management system implements a milestone-based policy using the mechan-

• ism provided. In ENCOMPASS, software is first specified using a combination of natural

language and PLEASE, a wide-spectrum, executable specification and design language. Com-

ponents specified in PLEASE are then incrementally refined into components written in Ada[;

this process can be viewed as the construction of a proof in the Hoare calculus. Each refinement

is verified before another is applied; therefore, the final components produced by the development

satisfy the original specifications. PLEASE specifications may be used in formal proofs of

correctness; they may also be transformed into executable prototypes which can be used in the

validation and design processes. ENCOMPASS provides automated support for all aspects of

software development using PLEASE. We believe the use of ENCOMPASS will enhance the

software development process.

1. Introduetlon

It is both difficult and expensive to produce high-quality software. One solution to this problem is

the use of software engineering environrnenta which integrate a number of tools, methods, and data struc-

tures to provide support for program development and/or maintenance[2,17,29,34,43,54,06,79,90,93-

97,108,111]. The SAGA (Software Automation, Generation and Administration) project is investigating

both the formal and practical aspects of providing automated support for the full range of software

engineering activities[10,18-21,49,63,98-100]. ENCOMPASS[08] is an integrated environment being

_Ada is a trademark of the US Government, Ada Joint Program O_ce.
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created by the SAGA project to support the incremental development of software using the

PLEASE[99,100] executable specification language. In this paper, we describe the architecture of ENCOM-

PASS and give an example of software development in the environment.

A life-cycle model describes the sequence of distinct stages through which a software product passes

during its lifetime[37]. There is no single, universally accepted model of the software life-cycle[3,8,13,112].

The stages of the life-cycle generate software components, such as code written in programming languages,

test data or results, and many types of documentation. In many models, a specification of the system to

be built is created early in the life-cycle (many methods for specifying software have been pro-

posed[39,42,48,47,60,78,82]). As components are produced, they are verified[37] for correctness with

respect to their specifications. A specification is validated[37] when it is shown to correctly state the custo-

mers' requirements.

Producing a valid specification is a difficult task. The users of the system may not really know what

they want, and they may be unable to communicate their desires to the development team. If the

specification is in a formal notation, it may be an ineffective medium for communication with the custo-

mers, but natural language specifications are notoriously ambiguous and incomplete. Pratotyping and the

use of ezecutable specification language8 have been suggested as partial solutions to these prob-

lems[28,41,50,61,62,65,103,113]. Providing the customers with prototypes for experimentation and evalua-

tion early in the development process may increase customer/developer communication and enhance the

validation and design processes.

Even given a validated specification, it may be difficult to determine if an implementation is correct.

Many techniques for verifying the correctness of implementations have been proposed. For example, test-

ing can be used to check the operation of an implementation on a representative set of input datai38,74 ].

In a technical review process, the specification and implementation are inspected, discussed and compared

by a group of knowledgeable personnel[38,106]. If the specification is in a suitable notation, formal

methods can be used to verify the correctness of an implementation[48,5/,52,58,73,/09]. Many feel that no

one technique alone can insure the production of correct software[31,32]; therefore, methods which combine
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a number of techniques have been proposed[$6].

To help control the complexity of software design and construction, many different development

methods have been proposed[5,44,56,58,75,t10]. Many of these methods are based on a model of the

software development process; they combine standard representations, intellectual disciplines, and well

defined techniques in a unified framework. For example, it has been suggested that that the development

process be viewed as a sequence of transformations between different, but somehow equivalent,

specifications[6,7,23,70,77,83].

Others have suggested that modular programming[gl,101,104] and the top-down development of pro-

grams[33,44,58,107] can help reduce the di_culty of program construction and maintenance. By logically

dividing a monolithic program into a number of modules, we reduce the knowledge required to change

fragments of the system and decrease the apparent complexity. By using stepwise refinement to create a

• concrete implementation from an abstract specification, we divide the decisions necessary for an implemen-

tation into smaller, more comprehensible groups. A number of modern programming languages support

modular programming[30,69,72], and environments to support such methods have been both proposed and

constructed[17,93,94,111]. Methods to support the top-down development of programs have been both

devised and put into use[12,14,15,27,58,75,87,88].

The Vienna Development Method (VDM) supports the top-down development of software specified

in a notation suitable for formal verification[11,12,27,57-59,88]. In this method, components are first writ-

ten in a language combining elements from conventional programming languages and mathematics. A

procedure or function may be specified using pre- and pogt-conditiona written in predicate logic; similarly,

a data type may have an invariant. These abstract components are then incrementally refined into com-

ponents in an implementation language. The refinements are performed one at a time, and each is verified

before another is applied; therefore, the final components produced by the development satisfy the original

specifications.

PLEASE is a wide-spectrum, executable specification language which supports a development

method similar to VDM. PLEASE extends its underlying implementation, or base, language so that a pro-
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cedure or fun.ction may be specified with pre- and post-condltions, a data type may have an invariant, and

an implementation may be completely annotated. At present, we are using Ada[30,105] as the base

language. PLEASE specifications may be used in proofs of correctness; they also may be transformed into

prototypes which use Prolog[26,64] to _execute" pre- and post-conditions, and may interact with other

modules written in the base language. We believe that the early production of executable prototypes for

experimentation and evaluation will enhance the software development process.

ENCOMPASS is an integrated environment being constructed by the SAGA project to support incre-

mental software development using PLEASE. In ENCOMPASS, software is modeled as entities which

have relationships between them. These entities can be structured into complex hierarchies which may be

seen through different views. The configuration management system stores and structures the components

developed and used in a project, as well as providing a mechanism for controlling access. The project

management system implements a milestone-based policy using the mechanism provided. [n ENCOM-

PASS, software is first specified using a combination of natural language and PLEASE. Components

specified in PLEASE are then incrementally refined into components written in Ada; this process can be

viewed as the construction of a proof in the Hoare calculus[51,73]. Each refinement is verified before

another is applied; therefore, the final components produced by the development satisfy the original

specifications. ENCOMPASS provides automated support for all aspects of this development process.

In section two of this paper we describe the ENCOMPASS environment, both its architecture and

the life-cycle model on which it is based. In section three we describe IDEAL, the programming-in-the-

small environment used within ENCOMPASS, and in section four, we give an example of software

development using ENCOMPASS. In section five, we briefly describe the current status of the system and

in section six, we summarize the support ENCOMPASS provides for incremental software development.

2. ENCOMPASS

ENCOMPASS is designed to support a particular model of the software life-cycle; this is basically

Fairley's phased or waterfall life-cycle[37], extended to support the use of executable specifications and the

Vienna Development Method. In ENCOMPASS, a development passes through the phases planning,
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requirements definition, validation, refinement and system integration.

In the planning phase, the problem to be solved is defined and it is determined if a computer solution

is feasible and cost effective, while in the requirement8 definition phase, the functions and qualities of the

software to be produced by the development are precisely described[37]. In ENCOMPASS, software

requirements specifications are a combination of natural language documents and components specified in

PLEASE. Although the requirements specification describes a software system, it is not known if any sys-

tem which satisfies the specification will satisfy the customers. In ENCOMPASS, we extend Fairley's

phased llfe-cycle model to include a separate phase for customer validation.

The validation phase attempts to show that any system which satisfies the software requirements

specification will also satisfy the customers, that is, that the requirements specification is valid. [f not,

then the requirements specification should be corrected before the development proceeds to the costly

phases of refinement and system integration. To aid in the validation process, the PLEASE components in

the specification may be transformed into executable prototypes which satisfy the specification. These pro-

totypes may be used in interactions with the customers; they may be subjected to a series of tests, be

delivered to the customers for experimentation and evaluation, or be installed for production use on a trial

basis. We feel the use of prototypes will increase customer/developer communication and enhance the

validation process.

In the refinement phase, the PLEASE specifications are incrementally transformed into Ada imple-

mentations. The refinement phase can be decomposed into a number of steps, each of which consists of a

de6ign transformation and its associated verification phase. The design transformation may produce anno-

tated components in the base language as well as an updated requirements specification. Components

which have been implemented need not be refined further, but components which are only specified will

undergo further refinements until a complete implementation is produced. Each design transformation

creates a new specification, whose relationship to the original is unknown. Before further refinements are

performed, a verification phase must show that any implementation which satisfies the lower level

specification will also satisfy the upper level one. In our model, this is accomplished using a combination

5
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of testing, technical review, and formal verification.

PLEASE specifications enhance the verification of system components using either testing or proof

techniques. The specification of a component can be transformed into a prototype; this prototype may be

used as a test oracle against which the implementation can be compared. Since the specification is formal,

proof techniques may be used which range from a very detailed, completely formal proof using mechanical

theorem proving, to a development "annotated" with unproven verification conditions. ENCOMPASS is

an environment for the rigorous[58] development of programs. Although detailed mechanical proofs are

not required at every step, the framework is present so that they can be constructed if necessary. Parts of

a project may use detailed mechanical verification while other, less critical parts may be handled using less

expensive techniques.

The planning, requirements definition, and validation phases are sequential in nature, but during the

refinement phase, some tasks may be performed in parallel. For example, suppose a specification is refined

to produce a more detailed specification which contains a number of independent components. These com-

ponents may be refined concurrently to produce more detailed specifications and finally implementations.

These independently developed implementations must then be integrated into a complete system. In the

sy6tem integration pha_e, separately implemented modules are integrated into successively larger units,

each of which is shown to satisfy the specifications[37]. When the final integration has been performed, the

acceptance tests are performed, the product is delivered and the development is complete.

In ENCOMPASS, a phase may contain a sub-development just as a development contains a number

of phases. For example, if a system is very large and complex, the production of a prototype in the valida-

tion phase may in itself be a complete development. If the system is composed of several major com-

ponents, the production of each component from its specification during the refinement phase might also

be considered a complete development. By dividing the development process into small steps usin_

hierarchical composition, ENCOMPASS allows each step to be smaller and more comprehensible and

thereby increases management's ability to trace and control the project.
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2.1. System Archltecture

Figure I shows the top-level architecture of ENCOMPASS. The user accesses and modifies com-

ponents using a set of software development tools. These include ISLET, a language-oriented editor for the

construction and refinement of PLEASE specifications,and Ted[49], a proof management system which is

interfaced to a number of theorem provers. The configuration management system structures the software

components developed by a project and stores them in a project data base. The configuration management

system also provides a prlmatlve form of software capabilities to control access to components. The pro-

ject management system distributes these capabilities to implement a management by obyectives!45]

approach to software development; each phase in the llfe-cyclesatisfiesan objective by producing a mile-
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Figure 1. Architecture of ENCOMPASS
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stone which can be recognized by the system.

Configuration management is concerned with the identification, control, auditing, and accounting of

components produced and used in software development and maintenance[i,8,9,16]. Configuration control

systems and models of software configurations have been suggested as aids to configuration manage-

ment[4,35,40,53,55,67,68,71,78,89,102,114]. In ENCOMPASS, software configurations are modeled using

variant of the entity-relationship model[24,25;80] which incorporates the concepts of aggregation and gert-

eralization[ 91,92].

An entity is a distinct, named component; an entity may have attributes which describe its properties

or qualities. Two or more entities may have a relationship between them; a relationship may also have

attributes. A group of entities with a relationship between them may be abstracted into an aggregate

entity. This entity would have entities as the value of some or all of its attributes. A view is a mapping

from names to components. A project under development has a unique ba_e view or project library which

describes the components of the system being developed and the primitive relationships between them.

Other views can be include images of entities in this base view. In ENCOMPASS, access to components is

controlled through the use of views.

The project management system is organized around work trays[18], which provide a mechanism to

manage and record the allocation, progress, and completion of work within a software development pro-

ject. In ENCOMPASS, each user may have a number of work trays, each of which may contain a number

of taska that contain software products. Project libraries are one type of task. There are four types of

trays: input _rays, output trays, in-progress trays, and file trays. Each user receives tasks in one or more

input trays. The user may then transfer these tasks to an in-progress tray where he will perform the

actions required or him and produce new products. The user may then return the task via a conceptual

output tray to an input tray for the originator of the task. A user may also create new tasks in in-

progress trays that he owns. These tasks may then be transferred to another user's input tray. A task

that has been transferred back into the in-progress tray of the user who created the task may be marked

as complete and transferred to a file tray for long term storage.
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3. IDEAL

ENCOMPASS may be used to develop programs which consist of many interacting modules; in this

sense, it is an environment for programming-in-the-large[84,108}. IDEAL is an environment concerned

with the specification, prototyping, implementation and verification of singlemodules; it is the

programming-in-the-small environment used within ENCOMPASS.

Figure 2 shows the top-level architecture of IDEAL, which contains four tools: TED, a proof

management system which is interfaced to a number of theorem provers; ISLET (Incredibly Simple

Language-oriented Editing Tool), a prototype program/proof editor; a tool to support the construction of

executable prototypes from PLEASE specifications; and a test harness. The user interacts with these tools

through a common interface. The tools in IDEAL operate on components which are stored in a module

data base. The module data base is stored as part of a project data base by the configuration control sys-

tem; IDEAL receives a capability to the module data base from the project management system. The

module data base contains five types of components: symbol tables, proofs, source code, load modules _nd

test cases.

A set of symbol tables represent the PLEASE specifications and Ada programs being developed.

These symbol tables are displayed and manipulated by ISLET, a prototype program/proof editor. ISLET

can be used to create PLEASE specifications and incrementally refine them into Ads programs; this pro-

cess can also be viewed as the construction of a proof in the Hoare calculus[51,73]. Some steps in the proof

may generate verification conditions in the underlying first-order logic; these can be reformated as proofs

which serve as input for TED. Using TED, the user can structure the proof into a number of lemmas and

bring in pre-existing theories.

The symbol tables also serve as input for the prototyping tool, which uses them to produce execut-

able prototypes from PLEASE specifications. The source code for the prototypes is written in a combina-

tion of Prolog and Ada and utilizes a number of run-time support routines in both languages. The load

modules produced from both prototypes and final implementations are used by the test harness. From the

test harness, the user can invoke commands to manipulate test cases. Commands are available to: edit or

9
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I

I

IDEAL I

Screen

Interface

1 Prototyping TestTED ISLET Tool Harness l

Module Data Base

Figure 2. Architecture of IDEAL

browse the input for a test case; generate output for a test case; or run a program and compare the results

with output that has been previously checked for correctness.

The central tool in IDEAL is ISLET. It not only manipulates the symbol tables representing

specifications and implementations, but provides a user interface and, in a sense, controls the entire

development process.

10

i

!
I

I
I



i

i

II

i

i

i

i

I

i

I

i

I

I

I

I

i

i

II

I

September 15, 1986 Appendlx A DRAFT

3.1. ISLET

ISLET supports both the creation of PLEASE specifications and their incremental refinement into

annotated Ada implementations. This process can be viewed in two ways: as the development of a pro-

gram, or as the construction of a proof in the Hoare calculus[51,73]. The refinement process consists of a

number of atomic transformations. From the program view, an atom'ic transformation changes an unk-

nown statement into a particular language construct; from the proof view, an atomic transformation adds

another step to an incomplete proof. From the program view, defining a predicate adds a new construct to

the program; from the proof view, defining a predicate adds new axioms to the first-order theory on which

the proof is based.

Figure 3 shows the architecture of ISLET. The user interacts with ISLET through a simple

language-oriented editor similar to[85]. The editor provides commands to add, delete, and refine con-

structs; as the program/proof is incrementally constructed, the syntax and semantics are constantly

checked. The editor also controls the other components: an algebraic simplifier, a number of simple proof

procedures, and an interface to TED. Many steps in the refinement process generate verification conditions

in the underlying first-order logic. These verification conditions are first simplified algebraically and then

subjected to a number of simple proof tactics. These methods can handle a large percentage of the

verification conditions generated. If a set of verification conditions can not be proved using these methods

alone, the TED interface is invoked to create a proof in the proper format.

TED can then be invoked in an attempt to prove the verification conditions. Using TED is very

expensive, both in system resources and user time; however, many complex theorems can be proved with

its aid. The algebraic simplification and simple proof tactics used in ISLET are very inexpensive; however,

they are not very powerful. The combined use of these two methods supports the rigorous[58] develop-

ment of programs. Most of the verification conditions will be proven using inexpensive methods; those

that are expensive to verify may be proven immediately, or deferred until a later time. Parts of a system

may be developed using completely mechanical methods, while other, less critical parts may use less expen-

sive techniques.

U
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To further clarify the concepts and operation of ENCOMPASS and show how ENCOMPASS can

enhance the software development process, we will consider an example of software development. We will

follow the development from receipt of the assignment by the team leader through delivery of a verified

and validated implementation.

4. An Example of Software Development

For our example, we will consider a programming team consisting of a leader and two programmers;

there is a workspace for each member of the team. The team leader's workspace contains output trays to

send assignments to the each of the programmers as well as an input tray in which he receives completed
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tasks. Each programmer's workspace contains an input tray in which he receives assignments from the

leader and an output tray to facilitate the return of assignments to their originator. Assume that the team

is assigned the task of developing a set of procedures to compute simple combinatoric quantities. The sys-

tem is to be both validated by prototypln$ and formally verified. It will contain a procedure to calculate

the factorial of a number as well as a procedure to compute the number of unique k-combinations of n

items 2.

When the team leader receives the assingment by electronic mail, he creates a project library called

k_comb in his in-progress tray. In the planning phase, the team leader consults with the customers and

creates preliminary copies of two documents: the system definition and project plan. At this point, it is

decided that the system willconsistoftwo modules: one calledk_comb and one calledfactorial.The team

leadercreatesa program objectcontairtlngtwo modules with thesenames; each module contains an empty

symbol table and set of testcases. The team leaderthen opens the factorialmodule and uses ISLET to

specifythe procedure factorial.

Figure 4 shows the team leader'sscreenafter completing the specificationof factorial.The large

window on the leftof the screengivesthe team leaderaccessto hisworkspace, which contains the trays in,

in_progress,out, to_programmer...I,and to__programmer__.The small window on the leftof the screenisto

trap console messages that would disruptthe display. The windows on the right of the screen show the

hierarchy of components through which the team leader accessed the factorialmodule. First the team

leaderopened the tray in..progreuwhich containsthe projectlibraryfor the k_comb task;thiscreated the

window on the bottom of the stack which islabeled TRAY_TOOL. Next, he opened the projectlibrary,

creating the window labeled TASK_TOOL He then opened the program object to create the window

labeledPROG_TOOL, and finallyhe invoked [DEAL on the factorialmodule to createthe top window on

the stack.

The top window shows the PLEASE specificationof the factorialmodule. This specificationdefinesa

package factorial,which provides a procedure by the same name. In PLEASE, procedures are defined

ZThe number of k-combinationsisequal to a!/(k!(a-k)!)

13
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using pre- and post-conditions which are designated by in(...) and out(...) respectively. The pre-

condition for a procedure specifies the conditions the input data must satisfy before procedure execution

begins. The pre-conditlon for factorial is true; the type declarations for the parameters give all the

requirements for the input. The post-conditlon for a procedure states the conditions the output data must

satisfy after procedure execution has completed. The post-condltion for factorial is is_act(z,y); the predi-

cate is_act must be true of the parameters to factorial after execution is complete.
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The predicate lB._fact is not pre-defined; it was developed by the team leader as factorial was

specified. In PLEASE, a predicate syntactically resembles a procedure and may contain local type, vari-

able, function or predicate definitions. At present, predicates are specified using Horn clauses: a subset of

predicate logic which is also the basis for Prolog[22,26]. This simplifies translation from PLEASE to Pro-

log, but limits the expressive power of PLEASE. The predicate is_.fact states that z factorial is equal to y

if z equals zero and y equals one, or if z minus one factorial is equal to tl and y equals tl times z (in other

words, is_fact(z,y) is true if (z = 0 A y ---- Z) V ((z-Z)!=tl A y = tl*z)).

After factorial is sl_ecified, it is prototyped. From IDEAL, the team leader issues a command which

automatically creates an executable prototype from the PLEASE specification. This prototype is compati-

ble with the IDEAL test harness; the program produced reads z from input, calls factorial, and then writes

y to output. From the test harness, input data can be edited, the prototype can be used to generate out-

put, and the output can be manually checked for correctness. The team leader uses these tools to check

that the factorial prototype performs correctly on simple test data. After factorial has been prototyped,

the specification and prototyping processes are repeated for k_comb, which uses factorial.

After both modules are specified and prototyped, the validation phase begins. The prototype system

is delivered to the customers for evaluation; it is subjected to a series of tests, and possibly installed for

production use on a trail basis. The team leader consults with the customers to produce an updated set of

documents, as well as a set of acceptance tests[37] which will be used to evaluate the final implementation.

These tests are stored in a form compatible with the IDEAL test harness; the implementation can be run

on pre-existing input and the results compared with those produced by the prototype. After the valida-

tion phase is complete, the refinement phase begins. The production of a verified implementation which

passes the acceptance tests is the milestone for completion of this phase.

First, the implementation task is decomposed into sub-tasks that can be performed in parallel. It is

decided that the implementation of factorial will be performed by the first programmer, while k_comb will

be implemented by the second. The team leader creates two views of the project library; both provide

access to all the documents produced in the development, but one provides access to factorial while the

16
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other provides access to k_comb. The team leader then transfers the first view to the tray labeled

to_.programmer_.1 in his workspace; this causes the view to appear in the firstprogrammer's input tray.

Similarly, the second view issent to the second programmer.

Figure 5 shows the team leader's and programmer's workspaces after the transfers are complete.

'The team leader's workspace contains the project library, which contains two documents, the 8_/stem

definition and the project plan, as well as a program object containing the modules factorial and k_comb.
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The first programmer's workspace contains the first view, which contains an image of the system

definition, the project plan and factorial; it does not provide access to k_comb. The view in the second

programmer's workspace is similar, but gives access to k_comb and not factorial.

When the first programmer checks his input tray, he discovers the view of the project library; he can

receive more information by electronic mail or in an auxiliary document. He then opens the view, the pro-

"gram object, and the factorial module. Using ISLET, the programmer then refines the specification of fac-

torial into an implementation. As the refinement is performed, verification conditions are generated

automatically. As the project plan calls for a formally verified implementation, the verification conditions

are mechanically certified as the refinement is performed.

After the implementation is produced, the programmer uses the test harness to run the implementa-

tion on the acceptance tests produced in the validation phase. The milestone for completion of his assign-

ment is the production of a formally verified implementation which passes the acceptance tests. When the

milestone has been reached, the programmer transfers the view of the project library to his output tray;

this causes the view to appear in the team leader's input tray. The second programmer follows a similar

implement and verify, test, and transfer scenario with the k_comb module.

When the team leader discovers that both views are in his input tray, he knows the project should be

complete. He checks to be sure that the milestone for the refinement phase has been reached; using tools in

ENCOMPASS, he certifies that the implementations are formally verified and pass the acceptance tests.

When the milestone has been verified, the project is delivered to the customers. At this point the project is

complete, and can be transferred to a file tray for long term storage.

5. System Status

The SAGA project has been active at the University of Illinois at Urbana-Champaign for over five

years. ENCOMPASS has been under development since the summer of 1984; a prototype implementation

has been operational since the summer of 1986. This prototype includes simple implementations of the

project management and configuration control systems, as well as IDEAL. It is written in a combination

of C, Csh, Prolog and Ada. The subset of PLEASE currently implemented includes the if, while, and

17
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assignment statments, as well as procedure calls with in, oat or in out parameters. The language now sup-

ports a small, fixed set of types including natural numbers, lists, booleans and characters. ENCOMPASS

has been used to develop small programs, including the example given in this paper.

6. Summary

ENCOMPASS is an integrated environment being constructed by the SAGA project to support incre-

mental software development in a manner similar to the Vienna Development Method. In ENCOMPASS,

software is modeled as entities which may have relationships between them. These entities can be struc-

tured into complex hierarchies which may be seen through different views. The configuration management

system stores and structures the components developed and used in a project, as well as providing a

mechanism for controlling access. The project management system implements a milestone-based policy

using the mechanism provided. In ENCOMPASS, software is first specified using a combination of natural

language and PLEASE, a wide-spectrum, executable specification and design language. Components

specified in PLEASE are then incrementally refined into components written in Ads; this process can be

viewed as the construction of a proof in the Hoare calculus. Each refinement is verified before another is

applied; therefore, the final components produced by the development satisfy the original specifications.

PLEASE specifications may be used in formal proofs of correctness; they may also be transformed into exe-

cutable prototypes which can be used in the validation and design processes. ENCOMPASS provides

automated support for all aspects of software development using PLEASE. A prototype implementation

of ENCOMPASS has been constructed at the University of Illinois at Urbana-Champaign. We believe the

use of ENCOMPASS will enhance the software development process.

7. References

1. "Software Configuration Management", Standard 828-1983, IEEE Computer Society, Los Angeles, California, 1983.

2. Special Issue on the Gandalf Environment. Journal of Systems and Software (May, 1985) vol, 5, no, 2.

3. Proceedings of the hternatioaal Work#hop on the Software Procele and Software Environments. Software Engineering Notes
(August 1986) vol. II, no. 4.

4. Agnareson, gnorri and M. S. Kriahnamoorthy. Toward# = Theory o/Package#. Proceedings of the ACM SIGPLAN 85
Symposium on Language Issues in Programming Environments (June, 1985) pp, tlT-L30.

5. Balzer, Robert. A 15 Year Perepectiue oa A,_tomatie Programming. IEEE Transactions On Software Engineering
(November 1985) voi. SE-11, no. 11, pp. 1257-1288.

18

I

II
I
I

l
I
I

I!
I

I
l

I
f

I
I
i
I

I
I



I

I

I

I

l

I

I

I

I
I
I
I

I

I

I
I
I
I
I

September 15, 1988 Appendix A DRAFT

8. Balzer, Robert, Thomas E. Cheatham and Corde[I Green. Software Technology in the iggO's: Using a New Paradigm. [EEE

Computer (November 1983) vo[. 16, no. 11, pp. 39-45.

7. Barstow, David R. On Convergence Toward a Database of Program Transformations. ACM Transactions on Programming

Languages and Systems (January 1985) vol. 7, no. 1, pp. 1-9

8. Bersoff, Edward H. Elements of Software Configuration Management. IEEE Transactions on Software Engineering (Janu-

ary 1984) vol. SE-[0, no. 1, pp. 79-87.

9. Bersoff, E. H. Software Configuration Man6gement: A Tutorial. [EEE Computer (January, 1979).

10. Beshers, George M. and Roy H. Campbell. Maintained and Constructor Attributes. Proceedings of the ACM SIGPLAN 85

Symposium on Language Issues in Programming Environments (June 1985) pp. 34-42.

11. Bjorner, D. and Cliff B. Jones. Formal Specification and Software Development. Prentice-Hall, Englewood Cliffs, N.J.,

1982.

12. Bloomfield, Robin E. and Peter K. D. Froome. The Application of Formal Methods to the Assessment of High integrity Sofltuare.

IEEE Transactions on Software Engineering (September 1988) voi. SE-12, no. 9, pp. 988-993.

13. Blum, B. [. The Life-Cycle - A Debate Over Alternative Models. Software Engineering Notes (October 1982) vol. 7, pp. 18-

20.

14. Britcher, Robert N. and James J. Craig. Using Modern Design Practices to Upgrade A_ng Software Systems. IEEE Software

(May 1986) voi. 3, no. 3, pp. 16-24.

15. Britcher, Robert N. and Allan R. Moore. Increased Productit_ty Through the Use of Software En_nsering in.an [ndustrial

Ent'ironme_d. Proceedings of the IEEE Computer Software and Applications Conference (t981) pp. 199-205.

16. Buckle, J.K. Software Configuration Management. Scholium international Inc., Great Neck, N.Y., 1982.

[7. Buxton, J. N. and V. Stenning. "Requirements for ADA Programming Support Environments, $toneman", U.S. Dept. Defense,

1980.

18. Campbell, Roy H. and Robert B. TerwiHiger,. The SAGA Approach to Aztomated Project ,_[anagement. in: International

Workshop on Advanced Programming Environments, Lynn R. Carter, ed. Springer-Veriag Lecture Notes in Computer

Science, New York, 1986, pp. 145-159

19. Campbell, Roy H. SAGA: A Project to Automate the Management of Software Production Systems. in: Software Engineering

Environments, [an Sommerville, ed. Peter Perigrinus Led, 1986.

20. Campbell, Roy H. and Peter A. Kirslis. The SAGA Project: A System for Software Deoelopment. Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments

(April 1984) pp. 73-80.

21. Campbell, Roy H. and Pant G. Richards. SAGA: A system to automate the management of software productio_ Proceedings of

the National Computer Conference (._vEay 1981) pp. 231-234.

22. Chang, Chin-Liang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press,

New York, 1973.

23. Cheatham, Thomas E., Glenn H. Holloway and Judy A. Townley. Program Refinement 13y Traneformatio_ Proceedings of

the 5th International Conference on Software Engineering (1981) pp. 430-437.

24. Chen, Peter Pin-Shah. The E_dity-Relaiionehip Model - Toward n Unified Vielo of Data. ACM Transactions on Database

Systems (March 1976) voi. I, no. 1, pp. 9-36.

25. _. ER - A Historical Perspectiee and Futnre Directions. in: The Entity-Relationship Approach to Software Engineer-

trig, S. Jajodia C. G. Davis P. A. Ng and R. T. Yeh, _,_I. Elsevier Science, 1983, pp. 71-77.

26. Clocksin, W. F. and C. S. Mellish. Programming in Proiog. Springer-Verlsg, New York, 1981.

27. Cot[am, [. D. The Rigorous Deeelopment of a System V'errion Control Program. IEEE Transactions on Software Engineer-

ing (March 1984) vo[. SE-10, no. 3, pp. 143-164.

28. Davis, Ruth E. Runnable Specification as a Design Tool. In: Logic Programming, K. L. Clark and S. A. Tarnlund, ed.

Academic Press, London, 1982, pp. 141-149.

29. Davis, Carl G. and Charles R. Vick. The Software Development System. In: Tutorial: Automated Tools for Software

Engineering, Edward Miller, ed. IEEE Computer Society, New York, 1979, pp. 138-153.

30. Defense, U. S. Dept. Reference Manual for the ADA Programming Language ANSI/MIL-STD-1815A-1983.

Springer-Verlag, New York, 1983.

31. DeMii]o, R. A., R. J. Lipton and A. J. Perils. Soci_ Processes and Proofs o/Theorems. Communications of the ACM (May,

1979) vol. 22, no. 5, pp. 271-280.

32. Dijkstra, E. W. Structured Programming. in: Software Engineering Principles, J. N. Buxton and B. Randall, ed. NATO Sci-

ence Committee, Brussels,Belgium, 1970.

19



September15, 1986 Appendlx A DRAFT

33. ----. A Discipline of Programming. Prentice Hall, Englewood Cliffs,New Jersey,1976.

34. Dolotta, T. A. and J. R. Mashey. An [ntroduction to the Programmer's Workbench. In: Tutorial: Automated Tools for

Software Engineering, Edward Miller,ed. [EEE Computer Society, New York, 1979, pp. 154-158.

35. Estub[ier,J., S. Ghoul _nd S. Krakowiak. Preliminary Ezperience with a Configuration Control System for Modular Programs.

Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments (April 1984) pp. 149-156.

36. Fagan, Michael E. Advances in Software fnspections.[EEE Transactions on Software Engineering (July 1986) vol. SE-12,

no. 7, pp. 744-75I.

37. Fair[ey, Richard. Software Engineering Concepts. McGraw-Hill, New York, 1985.

38. Gannon, John, Paul McMullin and Richard Hamlet. Data-Abstraction [mplement,qion, Specification, and Testing. ACM Tran-

sactions on Programming Languages and Systems (July 1981) vo[. 3, no. 3, pp. 211-223.

39. Gehani, Narain and Andrew D. McGettrick (eds.). Software Specification Techniques. Addison Wesley, Reading, Mas-

sachusetts, 1986.

40. Goguen, Joseph A. Reusing and interconnecting Software Components. Computer (February 1986) vol. Ig, no. 2, pp. 16-28.

41. Goguen, Joseph and Jose Meseguer. Rapid Prototypin9 in the OBJ Ezrcecntable SpecificationLaguage. Software Engineering

Notes (December 1982) vo[. 7, no. 5, pp. 75-84.

42. Goguen, Joseph, James Thatcher and Eric Wagner. An initial Algebra Approach to the Specification, Correctness and implemen-

tation of Abstract Data Types.. In: Current Trends in Programming MethodologY, IV, Raymond Yeh, ed. Prentice-Hail,

London, 1978, pp. 80-149.

43. Goldberg, A. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley, Reading, MA, 1984.

44. Gries, David. The Science of Programming. Springer-Verlag, New York, 1981.

45. Gunther, R. Management Methodology for Software Product Engineering. Wiley [nterscience,New York, 1978.

46. Guttag, J. V. znd J. J. Horning. The Algebraic Specification of Abstract Data Types. Acta [nformatica (1978) vol. 10, pp. 27-

52.

47. Guttag, John V, James J. Horning and Jeannette M. Wing. The Larch Parody of Specification Languages. [EEE Software

(September lgg5) vo[. 2, no. 5, pp. 24-36.

48. Guttag, John V., EllisHorowitz and David R. Musser. Abstract Data Types and Software Validation.Communications of the

ACM (December 1978) vol. 21, no. 12, pp. 1048-1063.

49. Hammers[oK, David H., Samuel N. Kamin and Roy H. Campbell. Tree-Oriented interactive Processing _th an Application to

Theorem-Proving. Proceedings of the Second ACM/IEEE Conference on Software Development Tools, Tech-

niques, and Alternatives (December, 1985).

50. Henderson, Peter. Functional Programming, Formal Specification, and Rapid Prototyping. IEEE Transactions on Software

Engineering (February, 1986) voi. SE-I2, no. 2, pp. 241-250.

51. Hoare, C. A. R. An Aziomatic Basis for Computer Programming. Communications of the ACM (October 1969) vo[. 12, no.

10, pp. 576-580.

52. _. Proof o/Correctness o/Data Representations. Acta Information (1972) voI. 1, pp. 271-281.

53. Horowitz, Ellis and Ronald C. Williamson. $ODOS: A Software Documentation Support Environment - it# Definition. IEEE

Transactions on Software Engineering.(August 1986) voi. SE-12, no. 8, pp. 849-859.

54. _._wden, William E. Contemporary Software Development Environments. Communications of the ACM (May 1982) vol. 25,

no. 5, pp. 318-329.

55. Huff, Karen E. A Database Model for Effective Configuration Management in the Programming Eneironment. Proceedings

IEEE 5th International Conference on Software Engineering, San Diego, CA (March 1981) pp. 54-61.

56. Jackson, M. System Development. Prentice-Hall, Englewood Cliffs, N.J., 1983.

57. Jones, Cliff B. Constructing a Theory of a Data Structure a# an Aid to Program Development. Acta informatica (1979) vol. 11,

pp. 119-137.

58. --. Software Development: A Rigorous Approach. Prentice-Hall International, Engelwood Cliffs, N.J., 1980.

59. --. Tentatiee Steps Toward a Deeelopment Method for Interfering Program#. ACM Transactions on Programming

Languages and Systems (October 1983) vol. 5, no. 4, pp. 596-619.

60. Kxmin, Samuel. Final Dnta Types and Their Specification. ACM Transactions on Programming Languages and Systems

(January 1983) vol. 5, no. I, pp. 97-121.

61. Kamin, S. N., S. Jefferson and M. Archer. The Role o/Ezecutable Specifications: The FASE System. Proceedings of the IEEE

Symposium on Application and Assessment of Automated Tools for Software Development (November 1983).

20

I

I
I

I
I

I
I

I
I
I

I
I

I

I
I
I
I
I
I



I

I
I

I

I

I
I
I

I
I
I

I
I

I
I

I
I
I
I

September 15, 1986 Appendlx A DRAFT

62. Kemmerer, Richard A. Testing Formal Speci/icationl to Detect Design Errors. IEEE Transactions on Software Engineer-

ing (January 1985) vol. SE-II, no. 1, pp. 32-43.

63. Kirslis,Peter A., Robert B. Terwilliger and Roy H. Campbell. The SAGA Approach to Large Program Development in _n

integrated Modular Environment. Proceedings of the GTE Workshop on Software Engineering Environments for

Programming-ln-the-Large (June 1985) pp. 44-53.

64. Kowalski, Robert. Logic as • Computer LanguaOe. In: Logic Programming, K. L. Clark and S. A. Tarnlund, ed. Academic

Press, London, 1982, pp. 3-16.

65. Kruchten, Philippe, Edmond Schonberg and Jacob Schwartz. Software Prototyping Using the SETL Progrsrnning Language.

IEEE Software (October 1984) vol. 1, no. 4, pp. 66-75.

66. Lair, Mark R. and Brent Hailpern. SW 2 - An Object-ba,d Programming Ent_ronment. Proceedings of the ACM SIGPLAN

85 Symposium on Language Issues in Programming Environments (June, 1985) pp. 1-11.

67. Lampson, Butler W. and Eric E. Schmidt. Organizing Soft,sure in a Distribzted Environment. SIGPLAN Notices (June 1983)

voL 18_ no. 6, pp. 1-13.

68. --. Practical Use of a Polymorphic Applicatise Language. Proceedings of the 10th ACM Symposium on Principles of

Programming Languages (January 1983) pp. 237-255.

69. Lauer, H. C. and E H. Satterthwaite. The impact of Mesa on System Design. Proceedings of the 4th [EEE International

Conference on Software Engineering (September 1979) pp. 174-162.

70. Lehman, M. M., V. Stenning and W. M. Turski. Another Look at Software Design Methodology. Software Engineering Notes

(April 1984) vol. 9, no. 2, pp. 38-53.

71. Lewis, Brian T. Ezperieace with a Syste_ for Controlling Software Versions in a Distributed Environment. Symposium on

Application and Assessment of Automated Tools for Software Development (November 1983) pp. 210-219.

72. Liskov, Barbara, Alan Snyder, Russ[[ Atkinson and Craig Scha_ert. Abstractio_ Mechanisms in CLU. Communications of the

ACM (August 1977) vo[. 20, no. 8, pp. 564-576.

73. Loeckx, Jacques and Kurt Sieber.The Foundations of Program Verification. John Wiley _" Sons, New York, 1984.

74. Meyers, G. J.The Ar_ of Software Testing. John Wiley _ Sons, New York, 1979.

75. Mills, Harlan D. and Richard C. Linger. Data Structured Programming: Program Design u_thout Arrays and Pointers. [EEE

Transactions on Software Engineering (February 1986) vol. SE-12, no. 2, pp. 192-197.

76. Mugger, David R. Abstract Data Type Specificatio_ in the AFFIRM System_ [EEE Transactions on Software Engineering

(January 1980) vot. SE-6, no. l, pp. 24-32.

77. Neighbors, James M The Draco Approach to Constrfficting Software Iron Reu#,,ble Contponents. IEEE Transactions on

Software Engineering (September 1984) vol. SE-10, no. 5, pp. 564-574.

78. gasher, Harold L. A New Program Structuring Mechanient Based o_ Layered Graphs. Proceedings of the llth ACM Sympo-

sium on the Principles of Programming Languages (January 1984) pp. 11-22.

79. Osterwed, Lena J. Toolpsck - An Ezperiment,_l Sniff#are Development Environment Research Project. [EEE Transactions on

Software Engineering (November 1983) vol. SE-9, no. 6, pp. 673-685.

80. Parent, Christine and Stefano Spaccapietra. A_ Algebra /or a General Entity-Relationship Model. IEEE Transactions on

Software Engineering (July 1985) vol. SF_,-II, no. 7, pp. 634-643.

$1. Pumas, D. L. Oa the Criteria To Be Used in Decomposing Systems into Modldee. Communications of the ACM (December

1972) vol. 15, no. 12, pp. 1053-1068.

82. --. The Uet of Precise Specifications in the Development of Software. IFIP Congress Proceedings (1977) pp. 861-867.

83. Partsch, H. and R. Steinbruggen. Progrant Tra_forntation Sgstente. Computing Surveys (September 1983) vol. 15, no. 3, pp.

199-236.

84. Ramamoorthy, C. V., Vijay Gary and Atull Praka_h. Prograntnting in the Large. IEEE Transactions on Software

Engineering (July 1986) vol. SE-12, no. 7, pp. 769-783.

85. Reps, Thomas and Bowen Alpern. interactive Proof Checking. Proceedings of the llth ACM Symposium on the Princi-

ples of Programming Languages (January 1984) pp. 36-45.

86. Richardson, Debts J. and Lori A. Clarke. Partition Analysis: A Method Combining Testing and P'erification. IEEE Transac-

tions on Software Engineering (December, 1985) vol. SE--11, no. 12, pp. 1477-1490.

87. Ross, Douglas T. Structsred A_,,lyeie (SA): A Language /or Commsnicating ideas. IEEE Transactions on Software

Engineering (January 1977) vol. SE-3, no. 1, pp. 16-34.

88. Shaw, R. C., P. N. Hudson and N. W. Davis. introduction o/A Formal Technique into a Soflt#are Development Environment

(Early Obeersations). Software Engineering Notes (April 1984) vol. 9, no. 2, pp. 54-79.

89. Shigo, Osamu, Yoshio Wads, Yuichi Terashima, Kanji Iwamoto and Takashi Nishimura. Configuration Control/or Evolutional

21



September 15, 1986 Appendlx A DRAFT

Software Products. Proceedings of the 6th [EEE International Conference on Software Engineering (September

1982) pp. 68-75.

90 Smith, Douglas R, Gordon B. Kotik and Stephen J Westfold. Research on Knowledge-Based 3oftware Environments at Kestrel

Institste.IEEE Transactions on Software Engineering (November 1985) voL SE-11, no 11, pp 1278-1295.

91. Smith, John M. and Diane C. P. Smith. Database Abstractions: Aggregation. Communications of the ACM (June, 1977) vol.

20, no. 5, pp. 405-413.

92. Smith, John Miles and Diane C. P. Smith. Database Abstractions: Aggregation and Generalization. ACM Transactions on

Database Systems (June 1977) vol.2, no. 2, pp. 105-133.

93. Standish, Thomas A. and Richard N. Taylor. Arctsrus: A Prototype Advanced ADA Programming Environment. Proceedings

of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development

Environments (April 1984) pp. 57-64.

94. Sweet, Richard E. The Mesa Programming Ensironment. ACM SIGPLAN 85 Symposium on Language Issues in Pro-

gramming Environments (June 1985) pp. 216-229.

95. Swinehart, Daniel C., Polle T. Zellweger and Robert B. Hagmann. The Str_ctsre of Cedar. ACM SIGPLAN 85 Symposium

on Languase Issues in Programming Environments (June 1985) pp. 230-244.

96. Teitelbaum, Tim and Thomas Reps. The Cornell Program Synthesizer:A Syntaz-Directed Programming Environment. Com-

munications of the ACM (September 1081) vol. 24, no. 9, pp. 563-573.

97. Teitelman, W. and L. Masinter The [vderlispProgramming Environment. Computer (April 1981) vol. 14, no. 4, pp 25-33.

98. Terwil[iger, Robert B. and Roy H. Campbell. ENCOMPASS: a SAGA Based Enuironment for the Composition of Programs and

Specificationl.Proceedings of the tYth Hawaii International Conference on System Sciences (January 1985) pp.

436-447.

99. -- "PLEASE: Executable Specificationsfor Incremental Software Development", Report No. UIUCDCS-R-86-1295, Dept. of

Computer Science,University of illinoisat Urbana-Champaign, 1988.

100. ----. PLEASE: Predicate Loyic based EzecutAble SpEcifications. Proceedings of the 1986 ACM Computer Science

Conference (February, 1986) pp. 349-358.

101. Tichy, Walter F. Software Development Control Based on Module [nterconnectio_ Proceedings IEEE 4th International

Conference on Software Engineering (1979) pp. 29-41.

102. --. Design, Implementation, and Eualzation of a Resieion Control System. Proceedings of the 6th iEEE International

Conference on Software Engineering (September 1982) pp. 58-67.

103. Tseng, Jine S., Boleslaw Szymanski, Yuan Shi and Noah S. Prywes. Real-Time Software Life Cycle with the Model System.

IEEE Transactions on Software Engineering (February 1986) rot. SE-12, no. 2, pp. 358-373.

104. Warren, Sally, Bruce E. Martin and Charles Hoch. Ezperience with A Module Package in De,eloping Production Q_ality PAS-

CAL Programs. Proceedings of the 6th International Conference on Software Engineering (September 1982) pp.

246-253.

105. Wegner, Peter.Programming with Ada: an Introduction by Means of Graduated Examples. Prentice-Hall, Englewood

Cliffs,New Jersey,1980.

106. Weinberg, Gerald M. and Daniel P. Freedman. Re_iews, W,_Ikthro_gh#, and Inspections. IEEE Transactions on Software

Engineering (January 1984) vol. SF_,-10, no. 1, pp. 68-72.

107. Wirth, Niklaus. Program DeeetopmeM by Stepwise Refiaeme_. Communications of the ACM (April 1971) voi. 14, no. 4, pp.

221-227.

108. Wolf, Alexander L., Lori A. Clarke and Jack C. Wileden. Ado-Based Snpport for Programming-in-the-Large. IEEE Software

(March, 1985)vol. 2,no. 2, pp. 58-71.

109. Wulf, William A., Ralph L London and Mary Shaw. An I_trod_ction to the Constr_ction and Verificationof Alphard Programs.

IEEE Transactions on Software Engineering (December 1976) rot. SE-2, no. 4, pp. 253-265.

110. Yourdon, E. and L. L. Constantine. Structured Des_n: Fundamentals of a Discipline of Computer Program and Sys-

tems Design. Prentice-Hall, Englewood Cliffs,N.J., 1979.

111. Yuasa, Taiichi and Reiji Nakajima. IOTA: A Modular Programming Syetent IEEE Transactions on Software Engineering

(February 1985) vol. SE,-II, no. 2, pp. 179-187.

112. Zave, Pamela. The Operation_ Vers,,e the Coneentional Approach to Software Deeelopment. Communications of the ACM

(February 1984) vol.27, no. 2, pp. 104-118.

113. rave, Pamela and William Schnell. Salient Featlres of ar_ Ezec_tabte Specification Langlage and It# Environment. IEEE Tran-

sactions on Software Engineering (February 1985) vol. SE-12, no. 2, pp. 312-325.

114. Zucker, Sandra. Automating the Configuratiou Management Process. Proceedings SOFTFAIR, Arlington, Virginia (July,

1983) pp. 164-172.

22

I

I
I
I
I

I
I

I
I

I
I

I
I

I
I
I
I
I
I



I

I
I
I

i

!
I

e
I
I

I
I

I
I

I
I
I

I
I

Appendix B

PLEASE: Executable Specifications

for Incremental Software Development

Robert B. Terwilliger

Roy H. Campbell

Report No. UIUCDCS-R-86-1295

Department of Computer Science

1304 W. Springfield Ave.

University of Illinois at Urbana-Champaign

Urbana, Illinois t}1801

217-333-4428

Preprint October 7, 19811

This research is supported by NASA Grant NAG 1-138



Appendix B

PLEASE: Executable Specifications

for Incremental Software Development-

Robert B. Terwilllger

Roy H. Campbell

Department of Computer Science
University of Illinois at Urbana-Champaign

252 Digital Computer Laboratory

1304 West Springfield Avenue
Urbana, I1, 81801

(217) 333-4428

:This research is supported by NASA grant NAG 1-138.

Abstract

PLEASE is an executable specification language which supports software development by incre-

mental refinement. PLEASE is part of the ENCOMPASS environment which provides automat-

ed support for all aspects of the development process. Software components are first specified us-

ing a combination of conventional programming languages and predicate logic. These abstract

components are then incrementally refined into components in an implementation language.
Each refinement is verified before another is applied; therefore, the final components produced by

the development satisfy the original specifications. PLEASE allows a procedure or function to be

specified using pre- and post-conditions, a data type to have an invariant, and an implementa-
tion to be completely annotated. PLEASE specifications may be used in prooh of correctness;

they may also be transformed into prototypes which use Prolog to _execute" pre- and post-

conditions. We believe the early production of executable prototypes will enhance the develop-

ment process.

1. Introduction

It is widely acknowledged that producing correct software is both difficult and expensive. To help

remedy this situation, many methods for specifying[27,30,32,33,45,58,60] and verifying[34,38,39,43,54,741

software have been developed. The SAGA (Software Automation, Generation and Administration) project

is investigating both the formal and practical aspects of providing automated support for the full range of

software engineering activities[8,12-15,35,48,87-69]. PLEASE is a language being developed by the SAGA

group to support the specification, prototyping, and incremental development of software components[69].

PLEASE is part of the ENCOMPASS environment which provides support for all aspects of the software

development process[67,68]. In this paper we describe the development methodology for which PLEASE

was created, give an example of development using the language, and describe the methods used to pro-

duce prototypes from PLEASE specifications.
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A life-cycle model describes the sequence of distinct stages through which a software product passes

during its lifetimeI25 ]. There is no single, universally accepted model of the software life-cycle[3,5,11,76].

The stages of the life-cycle generate software components, such as code written in programming languages,

test data or results, and many types of documentation. In many models, a specification of the system to

be built is created early in the life-cycle; as components are produced they are verified[25] for correctness

with respect to this specification. The specillcation is validated[25] when it is shown to satisfy the custo-

mers requirements.

Producing a valid specification is a ditiicult task. The users of the system may not really have

defined what they want, and they may be unable to communicate their desires to the development team.

[f the specification is in a formal notation it may be an ineffective medium for communication with the

customers, but natural language specifications are notoriously ambiguous and incomplete. Prototyping and

the use of executable specification languazes have been suggested as partial solutions to these prob-

lems[20,28,37,46,47,51,70,77]. Providing the customers with prototypes for experimentation and evalua-

tion early in the development process should increase customer/developer communication and enhance the

validation and design processes.

Even given a validated specification, it may be difficult to determine if an implementation is correct.

Many techniques for verifying the correctness of implementations have been proposed. For example, test-

ing can be used to check the operation of an implementation on a representative set of input data[26,58].

In a technical review process, the specification and implementation are inspected, discussed and compared

by a group of knowledgeable personnel[24,72]. If the specification is in a suitable notation, formal methods

can also be used to verify the correctness of an implementation[34,38,39,43,54,74]. Many feel that no one

technique alone can ensure the production of correct software[22,23]; therefore, methods which combine a

number of techniques have been proposed[64].

To help manage the complexity of software design and development, methods which combine stand-

ard representations, intellectual disciplines, and well defined techniques have been pro-

posed[4,31,41,43,57,75]. For example, it has been suggested that top-down development can help control
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the complexity of program construction. By using stepwise refinement to create a concrete implementation

from an abstract specification, we divide the decisions necessary into smaller, more comprehensible groups.

Others have suggested that the development process be viewed as a sequence of transformations between

different, but somehow equivalent, specificatlons[5,6,17,52,59,61].

The Vienna Development Method (VDM) supports the top-down development of software specified

in a notation suitable for formal verlfication[9,10,19,42-44,65]. In this method, software is first written in

a language combining elements from conventional programming languages and mathematics. A procedure

or function may be specified using pre- and post-conditions written in predicate logic; similarly, a data

type may have an invariant. These abstract components are then incrementally refined into components in

an implementation language. The refinements are performed one at a time, and each is verified before

another is applied; therefore, the final components produced by the development satisfy the original

specification.

PLEASE is a wide-spectrum, executable specification language which supports a development

method similar to VDM for software written in a base language; at present we are using Ada t as the base

language. PLEASE extends the base language so that a procedure or function may be specified with pre-

and post-conditions, a data type may have an invariant, and an implementation may be completely anno-

tated. PLEASE specifications may be used in proofs of correctness; they also may be transformed into

prototypes which use Prolog[18,50] to "execute" pre- and post-conditions, and may interact with other

modules written in the base language. We believe that the early production of executable prototypes for

experimentation and evaluation will enhance the software development process.

In section two of this paper, we describe the development methodology PLEASE was designed to

support and in section three, we give an example of software development using PLEASE. First we

present an example specification and describe how it may be used to derive an executable prototype. Then

we show a refinement of this specification and discuss the process of verifying that the refined specification

satisfies the original. In section four, we give an example of data type specification in PLEASE and in sec-

lAda is a trademark of the US Government, Ada Joint Program Office.
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tion five,we describethe currentstatus of the system. In sectionsix,we summarize the impact of using

the PLEASE approach insoftware development.

2. Incremental Software Development

Figure 1 shows the life-cycle model PLEASE was designed to support; different perspectives are

given in[13,67,68]. In our model, a customer requests that a system be constructed by the development

team. [n the requirement_ definition phase, the functions and properties of the software to be produced by

the development are determlned[25]. A system8 analyst produces a 8oftware requirement 8pecificationi25],

which precisely describes the attributes of the software to be produced. In our model, software require-

ments specifications include components specified in PLEASE. PLEASE specifications describe only the

function of a component, not its performance, robustness or reliability. These other qualities are specified

using natural language or other formalisms.

Although a software system may be shown to meet its specification, this does not necessarily imply

that the system satisfies the customers' requirements. The validation phase attempts to show that any sys-

tem which satisfies the specification will also satisfy the customers' requirements, that is, that the require-

ments specification is valid. If not, then the requirements specification should be corrected before the

development proceeds any further. In this phase the systems analyst interacts with the users to produce

the system validation summary[67], which describes the customers' evaluation of the software requirement

specification.

To aid in the validation process, the PLEASE components in the specification may be transformed

into executable prototypes which satisfy the specification. These prototypes may be used in interactions

with the customers; they may be subjected to a series of tests, be delivered to the customers for experimen-

tation and evaluation, or be installed for production use on a trial basis. The use of prototypes increases

customer/developer communication and enhances the validation process. [f it is found that the

specification does not satisfy the customers, then it is revised, new prototypes are produced, and the vall-

dation process is reinltiated; this cycle is repeated until a validated specification is produced.



Appendix B

I

I
I

Legend:

Level I:

Level 2."

Validation

Verification

Level n: I Verification

ControlFlow

Data Flow

• S

@

@

_ign

Figure i. Program Development Model

I

I

I

I

I

I

I

I

I

I

I

I

I

I

in general, this process does not guarantee that the specification is valid.
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type does satisfy the customers means only that at least one implementation which satisfiesthe

specificationisacceptable.For example, the post-condltionfor a procedure may hold true foran infinite

number of values while the prototype willonly return one. We say the specificationof a component is

complete if,for any input state,itissatisfiedby only one output state.Although in some casesitispossi-

ble to requireand verifythat the specificationofa component iscomplete, thisisdifficultin practice.We

believethat while prototypes enhance the validationprocess,they do not replacecommunication with the

customers and review of the specification.

When the validationphase iscomplete, the specificationundergoes a refinement,or design transfor-

mation, in which more of the structureof the system isdefinedand implemented. This phase produces a

8oftware de6ign 8pecifcation[25!, which provides a record of the design decisions made during the transfor-

mation. During the transformation, prototypes produced from PLEASE specifications may be used in

experiments performed to guide the design process. The design transformation may produce annotated

components in the base language as well as an updated requirements specification. Components which

have been implemented need not be refined further, but components which are only specified will undergo

further refinements until a complete implementation is produced.

Although a new specification has been created, its relationship to the original is unknown. Before

further refinements are performed, a verification phase must show that any implementation which satisfies

the lower level specification will also satisfy the upper level one. In our model, this is accomplished using a

combination of testing, technical review, and formal verification. PLEASE specifications enhance the

verification of system components using either testing or proof techniques. The specification of a com-

ponent can be transformed into a prototype; this prototype may be used as a test oracle against which the

implementation can be compared. Since the specification is formal, proof techniques may be used which

range from a very detailed, completely formal proof using mechanical theorem proving, to a development

"annotated _ with unproven verification conditions. PLEASE provides a framework for the rigorous[43 i

development of programs. Although detailed mechanical proofs are not required at every step, the frame-

work is present so that they can be constructed if necessary. Parts of a project may use detailed mechani-
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cal verificationwhileother,lesscriticalpartsmay be handled using lessexpensive techniques.

The life-cyclesupported by PLEASE can be viewed as a sequence of transformations between

differentspecificationlevels.On levelone, the requirements definitionphase transforms the customers

desiresinto an initial,abstract specification.Also on levelone, the correctnessof thistransformation is

determined by the validationphase. On leveltwo, the specificationproduced on levelone undergoes a

design transformation,the correctnessof which isdetermined by a verificationphase. All the remaining

levelstake the specificationproduced by the next higher levelas input,and transform itinto a more con-

creteform. The most concrete components are the annotated implementations, which are produced on the

lowestlevel.

A somewhat more complex model might view the refinement process as a search through a space of

possibleimplementations. A given specificationcan have a largenumber of correctimplementations; these

can be structuredas a tree. In thistree,each interiornode representsa specificationand each leafnode

representsa correctimplementation. At any time, the development islocatedat a given node. A design

decisionchooses an arc which leads from a specificationto a new specificationor implementation. The

goal of the refinement process is to search this tree for an acceptable implementation. An acceptable

implementation would not only be correct,but would have performance and other characteristicswhich

satisfythe users. In an actual refinement,some paths from a given specificationwillnot lead to acceptable

implementations;therefore,the refinement process may have to backtrack to finda solution. Ifan imple-

mentation isfound inadequate, designdecisionsmust be undone untilthe decisionwhich caused the prob-

lem has been reversed. At thispoint a correctdesigndecisioncan be made and, if possible,the restof the

development can be _replayed"[73].

In our model, each design transformation can be decomposed into a number of atomic transforma-

tions;ifeach atomic transformation iscorrectthen so isthe design transformation. Each design transfor-

mation isverifiedbefore another isapplied;this allows errorsin _he specificationand design processes to

be detected and correctedsooner and at lower cost. However, a number of atomic transformations may be

performed beforeany are verified;verifyingeach atomic transformation before the next isapplied would
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be prohibitively expensive. Instead, the information necessary to verify each atomic transformation is

recorded for use in the corresponding verification phase; at that time, they are verified using an appropri-

ate method.

To clarify our model further and show how PLEASE specifications enhance the development pro-

cess, we will consider an example of software development. We will follow the development through

requirements definition, validation of the original specification, a single design transformation, and

verification of the refinement.

3. An Example of Software Development

Assume that a customer needs a component which sortsa listof natural numbers. The component

should take a possiblyunsorted listas input and produce a sorted listwhich isa permutation of the origi-

nal as output. A pre-existingcomponent implementing listsof naturalsisto be re-used. In the require-

ments definitionphase, the customer discusseshis needs with the systems analyst and a requirements

specificationisproduced. Along with other documentation, thisspecificationmight contain a component

specifiedin PLEASE.

8.1. Speelfylng a Component

Figure 2 shows the PLEASE specification of such a component; to increase readability and under-

standability, the syntax of PLEASE/Ada is similar to Anna[22]. In Ada, packages are used to group logl-

cally related components[21,71]. The specification uses the pre-defined package NATURAL_LIST_.flKG,

which uses the PLEASE type list to define the type NATURAL_LIST as list of NATURAL. [n PLEASE,

as in Lisp or Prolog, lists may have varying lengths and there is no explicit allocation or release of storage;

however, the strong typing of Ada is retained and all the elements of a list must have the same type. In

PLEASE, as in Prolog, the empty llst is denoted by [], and a list literal is denoted by [fJ, where I is a

comma separated list of elements. The functions hd, tl, and cons have their usual meanings and L 1 I I L 8

denotes the concatenation of the elements of L l and Lf
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!

!

!
wlth NATURAL LIST PKG. use NATURAL LIST PKG.

package SORT_PKG is

-- predlcate PERM( LI. L2 In out NATURAL_LIST ) is true if

-- FRONT, BACK NATURAL LIST .

-- begln
-- L1 : [] and L2 : []

-- or

-- L1 = FRONT II cons(hd(L2),BACK) and

-- PERM(FRONT 11 BACK. %1(L2))

-- end

-- predlcate SORTED( L in out NATURAL_LIST ) is true if

-- begln
-- L= []

-- or

-- tl(L) = []

-- or

-- hd(L) <: hd(tl(L)) and SORTED(tI(L))

-- end ,

procedure SORT( INPUT In NATURAL_LIST OUTPUT out NATURAL_LIST )

--I where In( true ),
--[ out(PERM(INPUT,0UTPUT) and SORTED(0UTPUT) )

end SORT PKG

Figure 2. Specification of SORT..PKG
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The specification defines a package SORT_PKG which provides a procedure called SORT. The pro-

cedure takes two arguments: the first is a possibly unsorted input list, the second is a sorted list produced

as output. The specification defines the predicates PERM (permutation) and SORTED, as well as giving

pre- and post-conditions for the procedure. In PLEASE, the pre-condition for a procedure specifies the

conditions that the input must meet before _xecution begins, while the post-condition specifies the condi-

tions that the output must meet after execution has completed. In the specification, the state before execu-

tion begins is denoted by in(...), while the state after execution has completed is denoted by out(...). For

example, the pre-condition for SORT is simply true; the type declarations for the parameters give all the

requirements for the input. The post-condition for SORT states that the output is a permutation of the
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input and the output issorted.

In PLEASE, a predicatesyntacticallyresembles a procedure and may contain localtype, variable,

function or predicatedefinitions.For example, the predicatePERM statesthat two listsare permutations

of each other ifboth of the listsare empty, or ifthe firstelement in the second listisin the firstlistand

the remainder of the two listsare permutations of each other. At present,predicatesare specifiedusing

Horn clauses: a subset of predicatelogicwhich isalsothe basisforProlog[16,18].This approach allowsa

simple translationfrom predicatedefinitionsinto Prolog procedures;however, there are drawbacks. For

example, in pure Horn clauseprogramming thereisno way to specifythe falsehoodof formulae; for exam-

ple, the fact that SORTED([_,I/} can never be true. The solution used in Prolog is the closed world

assumption: if a fact is not provably true then it is assumed to be false. Unfortunately, the closed world

assumption may cause inconsistencies for full first-order logic[62]; therefore, at present there is no way to

specify negative information in PLEASE. Eventually, we plan to extend PLEASE to support a more

powerful logic.

The specification contains no explicit [/O statements. Currently, all I/O is handled implicitly by the

system; a program can be automatically generated which reads the in parameter to SORT from input, exe-

cutes the procedure, and writes the o_t parameter to output. Although this approach limits PLEASE to

the specification of programs with very simple f/O, it has several advantages: specifications without expli-

cit [/O are smaller and simpler to write; omitting the sometimes messy, implementation specific details of

I/O allows specifications to be more abstract; and the interaction of the specification, rapid prototyping

and test harness capabilities of ENCOMPASS is greatly simplified.

After the requirements specification has been created, it must be validated. The systems analyst can

discuss the specification with the customer and obtain test data and expected results for the system. The

PLEASE specification can then be used to produce a prototype which satisfies the specification. [f the pro-

totype performs correctly on the test data it can be delivered to the customer for evaluation. If the proto-

type does not perform correctly then we know the specification is invalid.

10
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3.2. Prototyplng the Speeifieatlon

The specification in Figure 2 can be automatically translated into a prototype written in a combina-

tion of Prolog and Ada. Figure 3 shows a simplified version of the Prolog code which is produced. The

predicates PERM and SORTED and the pre- and post-conditions for SORT are translated into Prolog

procedures, which are executed by an interpreter. When the SORT procedure is called, the in parameter is

converted to the Prolog representation and the call is passed to the interpreter. When the Prolog pro-

cedure for SORT completes, the out parameter is converted to the Ada representation and the original call

returns. Tools in the ENCOMPASS environment perform the translation and generate code to handle I/O

I
I
I

I
I

I
I

perm(Li,L2) _--
eq(Lt, [] ),eq(L 2, [] ).

perm(Ll,L2) ,--
eq(L1,Tempa),
hd(L2,Templ),
cons(Temp L,Back,Temp2),
append(Front, Temp2, Temp3 ),
append(Front,Back,Temp4),
tl(L2,Temps),
perm(Temp4,Temps).

sorted(L) .---
eq(L, []).

sorted(L) *--
tl(L,Templ),
eq(Templ, []).

sorted(L)4-.

hd(L,Templ),

tl(L,Temp2},

hd(Temp2,Tempa},
Iseq(Temp1,Tempa},

tl(L,Temp4),
sorted(Temp4).

sort_pre(Input,Output)*--true.
sort_post(Input,Output},---perm(Input,Output),sorted(Output}.

sort(Input,Output)_--
sort_pre(Input,Output},

sort_post(Input,Output}.

Figure 3. Prolog Code for SORTProcedure
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and other implementation level details. The Prolog procedure for SORT simply "executes" the pre- and

post-condltions.

The notion of execution is quite different for pre- and post-conditions. Executing a pre-condition

involves checking that given data satisfies a logical expression. Executing a post-condition means finding

data that satisfies a logical expression. For example, the post-condltion for sort must find a value for the

output list such that the input and output are permutations of each other and the output is sorted. To

accomplish this, the Prolog procedure for the post-condition performs a naive sort of the input llst. The

Prolog procedure perm functions as a _generator" and the procedure 8orted as a %elector'. When the pro-

cedure for the post-condition is invoked, perm is called to generate a permutation of the input list and

then 8orted is called to determine if the permutation is sorted. [f 8orted fails, then execution backtracks

and perm generates the next permutation to be evaluated. This continues until a sorted permutation is

generated. The performance of this sorting algorithm is quite poor; however, it can be improved by

transformation techniques applied to the logical formulae involved[38,40].

Although many implementations show significant deviations[{}{}], a _pure" Prolog interpreter can be

viewed as a resolution theorem prover for Horn clauses[16,18]. Using this model, the translation from

PLEASE predicates to Prolog code is simply a sequence of transformations between equivalent formulae.

The process consists of four steps. First the predicates are syntactically converted to the logical formulae

they represent. Both the parameters to a predicate and its local variables represent universally quantified

logical variables. For example, the predicate PERM in Figure 2 represents the logical formula:

V Li,Ls,Front,Back
(perm(LI,Ls) 4--

LI= [] AL2 = []
v

L 1 = append(Front,cons(hd(L2),Back)) A perm(append(Front,Back),tl(L2)) )

Next, the terms on the right hand side of the implication are unraveled into conjunctions of relations.

This is necessary because Prolog does not have a good notion of equality (for other solutions to this prob-

lem see[29,49]). We assume that for each function f(x-), there exists a relation F(_,y) such that

f(x-)=y iff F(_,y). Axioms which characterize the relation F(x,y) are part of the Prolog run-time library.

12
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We unravel the formula P(..f(x--)..) into the equivalent formula 3t (F(_,t)and P(..t..)). The standard

transformations to clause form are then used to convert the resultant formulae to Prolog procedures. To

continue the previous example, the predicate PERM would produce the Prolog procedure:

perm(Li,L2) *-_
ect(Lt, []). eq(L2, [])

perm{Lt,L2) 4-
hd(L2,Templ),
cons(Temp 1,Back,Temp2),
appead(Front,Temp2,Temps),
eq(L_,Temp3),
_ppead(Front,Back,Temp4),
tl(Ls,Temps),
perra(Temp4,Temps}.

The prototypes produced by this translation process are partially correct[54,55] with respect to the

specifications. In other words, if a prototype terminates normally then the value returned will satisfy the

post-condition. A prototype would be totally correct[54,55] if it was also guaranteed to terminate nor-

mally. The set of all logically valid formulae of predicate logic is not decidable[54,55]; therefore, in general

it is not possible to extend our approach to total correctness. Furthermore, most Prolog implementations

utilize an unbounded, depth-first search strategy which makes them incomplete as theorem-provers;

although the Prolog procedures produced by our translation process have the proper logical properties,

there is no guarantee that they will terminate.

In the last step of the translation process, a number of heuristic transformations are used on the Pro-

log procedures to increase the chances of termination. For example, the heuristic _move all equalities to

the front of the clause" is applied to the procedure perm shown above to get the final Prolog procedure

shown in Figure 3. To understand this heuristic, one must realize that the eq predicate always terminates.

It can instantiate one of its arguments and thereby increase the amount of _information" available to sub-

sequent procedures; this can increase the chances of termination. After the specification for SORT_.PKG

has been validated, it can be transformed into a more concrete form.
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3.3. Refining the Specification

Assume that a decision is made to implement the sort procedure using the quicksort algorithm. As a

first step, the original specification of SORT_.PKG is refined so that SORT implements an abstraction of

the quicksort algorithm. Figure 4 shows most of the refined specification. SORT_.PKG contains three pro-

cedures which are called by SORT: SELECT_.ELMT, PARTITION, and COMBINE. SORT has the same

specification as before, but is now completely implemented. To sort the input list, SELECT_ELMT is

called to select an element from the input list and then PARTITION is called to divide the list into two

sublists, LOW and HIGH, so that all the members of LOW are less than the selected element and all the

members of HIGH are greater. The lists LOW and HIGH are then sorted recursively and COMBINE is

called to form a sorted permutation of the input from the sorted sub-lists.

The body of SORT is completely annotated; in other words, there is an assertion both before and

after each executable statement. Each assertion states the conditions which must be satisfied whenever

execution reaches that point in the procedure. The assertions plus the executable statements form a proof

in the Hoare calculus[38,54,55]; this proof was incrementally created as the design transformation was per-

formed. Each atomic transformation corresponds to a proof step; the transformation between Figure 2

and Figure 4 corresponds to a proof with a number of steps. Each transformation can be seen from either

the program view or proof view. For example, Figure 5 shows the first step in the refinement og the SORT

procedure from both the procedure and proof views. In the program view, an atomic transformation takes

an incomplete program and produces a more concrete one; in the proof view, an atomic transformation

adds another step to an incomplete proof tree. For more discussion on the relationship of proofs and pro-

grams see[7].

Although this refinement has narrowed the possible implementations to those using the quicksort

algorithm, there are still many design decisions left unmade. The new specification may be refined into a

family of quicksort programs; these programs might differ in many characteristics, but all would satisfy

the specification. For example, the specification for SELECT_ELMT only requires that ELMT be a

member of LIST; the algorithm used to select a particular element is not specified at this level of abstrac-

14
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procedure SELECT ELMT( LIST In NATURAL LIST , ELMT out NATURAL ) is separate
--L where in_ LIST /= [] ), out(member(ELMT.LIST) )

-- predlcate IS PART( LIST in out NATURAL LIST . ELMT in out NATURAL
-- - LOW. HIGH in out NATURAL LIST ) Is true if

-- begln

-- PERM(LIST,LOW II [ELMT] I[ HIGH) and

-- LSEQALL(LOW.ELMT) and GREQALL(HIGH.ELMT)

-- end .

procedure PARTITION( LIST In NATURAL LIST . ELMT In NATURAL ,
LOW, HIGH out, NATURAL LIST ) Is separate

--I where in(member(ELMT,LIST) ). out( YS PART(LIST.ELMT,LOW,HIGH) )

procedure COMBINE( SORTED_L zn NATURAL_LIST , ELMT in NATURAL .
SORTED H in NATURAL LIST . LIST out NATURAL LIST ) is separate •

--I where out( LIST =-SORTED L II [EZMT] II SORTED_H ) .

procedure SORT( INPUT r I"in NATURAL k.ST OUTPUT out NATURAL LIST ) is

LOW. HIGH, SORTED L. SORTED H NATURAL LIST . ELMT NATURAL .

begin -- SORT
--I true .

if INPUT : [] then

--I true and INPUT : []

OUTPUT = []
--l PERM(INPU+,0UTPUT) and SORTED(0UTPUT)

else

--I true and INPUT /= []

SELECT ELMT(INPUT.ELMT)

--I member(ELMT, INPUT)

PARTITION(INPUT_ELMT.LOW.HIGH)

-- IS PART(INPUT.ELMT,LOW.HIGH)

SORT(LOW,SORTED L)

-- IS PART(INPUT.ELMT.LOW.HIGH) _nd PERM(LOW.SORTED_L) and SORTED(SORTED_L)

SORT(H_GH.SORTED_H)

-- IS PART(INPUT.ELMT.LOW.HIGH) and PERM(LOW.SORTED_L) and

-- - SORTED(SORTED L) and PERM(HIGH.SORTED_H) and SORTED(SORTED_H)

COMBINE(SORTED_L,ELMT,SDRTED H.0UTPUT)
--I PERM(INPUT,0UTPUT) and SORTED(0UTPUT)

end If

--I PERM(INPUT.0UTPUT) and SORTED(0UTPUT)

end SORT

Figure 4. Refinement of Sort Specification

tion. Similarly, the specification for PARTITION only states that all the elements in LOW are less than

or equal to ELMT and all the elements in HIGH are greater than or equal to ELMT; it says nothing about
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the algorithm used to produce these lists..ks the specification is refined further these algorithms will be

defined, thereby narrowing the acceptable implementations. However, before the new specification is

refined further, it must be shown that any implementation which satisfies the new specification will also

• satisfy the original.

I

I
I

I
I
I

I
i

I
I
I
I

Program View Proof View

l-- ................... r- ......................................

begzn -- SORT
--L true

<unknown t>

--I PERM_INPUT.0UTPUT)

--I and SORTED(OUTPUT)

end SORT ,

Ip} S, {q}

Where p -- true, S 1 = unknown_l,

q - permutation(input,output)

A sorted(output).
t. .......................................................... J

Refine unknown_/ into an if-then-doe 1 Instantiate S l to an if-then-el3e and
and generate appropriate assertions apply proof rule for conditional statements

begzn -- SORT

--I true

zf INPUT : [] then

--I true and INPUT : []

<unknown 2>

--I PERM_INPUT.0UTPUT)

--I and SORTED(OUTPUT)

else

--I true and INPUT /= [] .

<unknown 3>

--[ PERM[INPUT.0UTPUT)

--I and SORTED(0UTPUT)

end If :

--I PERM(INPUT.0UTPUT)

--I _nd SORTED(0UTPUT)

end SORT .

{pAe} S s {q}, {pA_e} Ss {q}

{p} if e th,. S s elJe Ss end if {q}

Where p -- true,

q ---permutation(input,output)

A sorted(output},

e -- input = [],

S i --ffiunknownA.

L- .............. ............................................ J

Figure 5. Refinement as Proof Construction

I
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3.4. Verifying the Refinement

A number of different methods may be used to show that the refined specification satisfies the origi-

nal. in the most informal case, inspection of the original and refined specifications by a senior designer, or

a peer review process might be used. A more rigorous approach might run prototypes produced from the

original and refined specifications on the same test data and compare the results; this method gives

significant assurance at low cost. However, in the words of E. W. Dijkstra, "Program testing can be used

to show the presence of bugs, never to show their absence." In the most rigorous case, mathematical rea-

soning would be used.

In ENCOMPASS, the refinement process is viewed as the incremental construction of a proof in the

Hoare calculus[38,54,55]; it is supported by ISLET[68], a language oriented editor similar to[63]. ISLET

provides commands to add, delete and refine constructs; as the specification is transformed into an imple-

mentation (and the proof is constructed) the syntax and semantics are constantly checked. Many atomic

transformations will generate verification conditions in the underlying first-order logic. These are algebra-

ically simplified and then subjected to a number of simple proof tactics. If these fail, input is generated for

TED, a proof management system that is interfaced to a number of theorem provers[35].

The use of general purpose theorem provers is quite expensive[l]; therefore, proofs using TED will

usually not be performed during a design transformation. Simple methods are used to eliminate trivial

verification conditions as they are generated; verification conditions which can not be eliminated by these

methods are recorded by ENCOMPASS for use during the corresponding verification phase. For example,

Figure 8 shows the verification conditions for the transformation from Figure 2 to Figure 4 which can not

be proven by algebraic simplification and simple proof tactics alone; out of eleven refinements, only two

generated non-trivial verification conditions. During the verification phase, these non-trivial formulae can

be subjected to peer review, informal proof, or mechanical certification.

When all the atomic transformations have been verified, the design transformation is known to be

correct. Once the design transformation has been verified, the new specification may be refined further

and the process repeated until an implementation is produced..klthough this example shows only the
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I

I

I
I

INPUT : [] :>

PERM(INPUT. []) and SORTED([])

IS PART(INPUT.ELMT.LOW.HIGH) and

PERM(LOW.SORTED L) and SORTED(SORTED L) and

PERM(HIGH.SORTED H) and SORTED(SORTED H) and

LIST = SORTED L TI [ELMT] II SORTED H-=>

PERM(INPUT.LIST) and SORTED(LIST) -

Figure 6. Verification Conditions for Refinement
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specification of a procedure, PLEASE may also be used to specify other classes of components, including

data types.

4. Speelfy|ng Data Types

It has been proposed that the use of abstract data types can enhance software specification, validation

and verification[30,32,45,53,58]. For example, Figure 7 shows the PLEASE specification of an Ada pack-

age defining the type NA TURAL_STACK to provide a stack of natural numbers. In PLEASE, a data type

has another type as its representation; for example, an object of type NATURAL__STACK is represented

using an object of type NATURALL[ST. As in VDM[43], a type has an in,sariant which restricts the set

of legal representations; the invariant must be true of any values input to, or output from, functions on

the type. For example, the type NATURAL_STACK has the invariant true meaning that all values of

type NA TURALLIST can be interpreted as values of NA TURAL_STACK.

In PLEASE, the functions on a data type are specified with pre-- and post-conditions in a manner

similar to procedures. For example, the function TOP has not(EMPTY) as a pre-condition; the function

is only defined on stacks with at least one element. The post-condition for TOP states that the value

returned by the function is the head of the list given as an argument. The pre- post-conditions for a func-

tion are used to generate axioms which characterize its behavior. These axioms are used inboth the Pro-

log prototypes produced from specifications and in the proof of theorems concerning the type.

18
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I
I
I

wlth NATURAL LIST PKG. use NATURAL LIST PKG.

p_ckage NATURAL_STACK_PKG is

type NATURAL STACK is new NATURAL_LIST ,
--I where S NATURAL STACK => true

function EMPTY STACK return NATURAL STACK

--I where return S NATURAL STACK => S = []

function EMPTY return BOOLEAN .

--I where return B BOOLEAN :> B : (S : [])

functlon PUSH( E in NATURAL , S NATURAL STACK ) return NATURAL_STACK

--I return NS NATURAL STACK => NS = cons_E.S)

functlon POP( S NATURAL STACK ) return NATURAL STACK

--i where _n(not(EMPTY) )_

--I return NS NATURAL STACK => NS = tl(S)

function TOP( S NATURAL STACK ) return NATURAL .
--i where in(not(EMPTq) ),

--I return E NATURAL => E = hd(S)

end NATURAL STACK PKG

Figure 7. NATURAL_STACK in Terms of NATURAL_.LIST

NATURAL__STACK..flKG defines five functions on the type NATURAL_STACK. The function

EMPTY_Y.STACK returns an empty list to be interpreted as an empty stack, while the function EMPTY

determines if any items are on a stack. The function PUSH takes a natural number and a stack as input,

and returns a new stack which is equal to the old stack with the natural number on top. The function

POP returns a stack with the top element removed, while the function TOP returns the element at the top

of the stack. NATURAL_STACK_.PKG can be used in other components to provide a stack of natural

numbers; it can be used in parameter or variable declarations, as the basis for new type definitions, or in

the specification of new software components.
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5. System Status

The SAGA projecthas been activeat the Universityof illinoisat Urbana-Champaign for over five

years. The ENCOMPASS environment has been under development since the summer of 1984. A proto-

type implementation of ENCOMPASS has been operationalsincethe summer of 1986; itiswritten in a

combination of C, Csh, Prolog and Ada. This prototype includesthe toolsnecessary to support software

development using PLEASE: an initialversionof ISLET, the language-oriented editor used to create

PLEASE specificationsand refinethem intoAda implementations;software which automatically translates

PLEASE specificationsinto Prolog proceduresand generates the support code necessary to callthesepro-

cedures from Ada; the run-time support routinesand axiom sets for a number of pre-definedtypes;and

interfacesto the ENCOMPASS test harness and TED. The subset of PLEASE currently implemented

includesthe if,while,and assignment statements,as well as procedure callswith in,out or in out parame-

ters. The language now supports a small,fixedsetof types includingnatural numbers, lists,booleans and

characters. PLEASE and ENCOMPASS have been used to develop small programs, including

specification,prototyping,and mechanical verification.

8. Summary

PLEASE is an executablespecificationlanguage which supports program development by incremen-

tal refinement. PLEASE ispart of the ENCOMPASS environment which provides automated support for

allaspectsof the software development process. Software components are firstspecifiedusing a combina-

tion of conventional programming languages and predicate logic. These abstract components are then

incrementally refinedinto components in an implementation language. Eacl_ refinement isverifiedbefore

another is applied; therefore,the finalcomponents produced by the development satisfythe original

specifications.

PLEASE specificationscan be transformed into prototypes which use Prolog to "execute" pre- and

post-conditions.We believethat the earlyproduction of executable prototypes for experimentation and

evaluationwillenhance the development process.Prototypes can increasethe communication between cus-

tomer and developer, thereby enhancing the validation process. Prototypes produced from PLEASE

2O



Appendix B

specifications can be used in experiments performed to guide the design process. Prototypes produced from

a PLEASE specification and its refinement can be run on the same test data and the results compared; this

method can give significant assurance that a refinement is correct at a low cost. PLEASE prototypes are

based on existing Prolog technology, and their performance will improve as the speed of Prolog implemen-

tations increases (commercial Prolog compilers which produce native code compatible with conventional

languages are already available[2!). As logic programming progresses, new versions of PLEASE can be

built based on more powerful logics. We believe that the use of methods similar to those based on

PLEASE specifications will enhance the design, development, validation and verification of software.
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1. INTRODUCTION

The cost and difficulty of producing correct software are well-known problems in the computer

industry. To help alleviate these problems, methods for specifying[8,14,15,20,22,23] and verify-

ing[9,11,14,21,30] software have been developed. The SAGA (Software Automation, Generation, and

Administration) project[I,2,4,10,18,19,27] is investigating the formal and practical aspects of providing

automated support for a broad spectrum of software engineering activities. The PLEASE language[28] is

being developed by the SAGA group to support the specification, prototyping, and rigorous development

of software components. In this thesis, I describe a set of Prolog run-time support libraries for PLEASE.
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Many programming methodologies have b.een proposed to help control the complexity of software

design and development[12,14,29,31]. In top-downs deeelopmettt methods, large programming problems are

decomposed into a number of smaller, less complex problems. Top-down development methodologies have

been defined[14,24] and implemented[26]. Using etep_i_se rej_nement[6], we start with an abstract

8peeij_eatio, of the problem and iteratively transform it into a real implementation; thus, the necessary

development decisions are divided into smaller, more comprehensible groups. The specification is a precise

statement of the function of the system. As the specification is incrementally refined, various software

components, such as programs, test data, and various types of documentation, are generated. After each

iteration, the components of the system are ver/.Fted for correctness with respect to the specification.

Too often, systems are delivered which do not satisfy their users. A specification which accurately

reflects the desires of the customer is difficult to produce. We say a specification is validated when it is

shown to satisfy the customer's requirements. A formal specification may be difficult for the users to

understand. It is easy to generate an informal specification, but it may be difficult to produce a system

from a natural t;mb_uage descriptloa. Pro/otlpldaf[71 and executab_ specit$cation languages[IS,17,22,32]

may help alleviate these problems. Providing prototypes for the customers to use and evaluate early in the

development process may increase communication between the customers and the developers. Once a valid

specification is produced, a real system can be developed from it. Testing or formal verification techniques

may be used to show that an implementation meets the requirements of the specification.

I



The Vienna Development Method[14,26] is an example of a top-down development methodology.

The Vienna Development Method (VDM) contains methods for the formal verification of system com-

ponents. In VDM, systems are specified in a language which combines elements of conventional program-

sing languages and mathematics. Pre- and post-condition8 written in predicate logic specify procedures.

In_ariants for user-defined data types are logical expressions which must be true both before and after the

execution of any procedure which manipulates the data type. To enhance the expressive power of

specifications, VDM adds the data types list, set, and map. These abetraet program_ are incrementally

refined into programs coded in an implementation language. Each refinement is verified for correctness.

Therefore, the final program produced by the development satisfies the original specification.

The PLEASE programming "language is designed to support a methodology similar to the Vienna

Development Method. In PLEASE, a procedure or function may be specified with pre- and post-

conditions written in predicate logic, and a user-defined data type, called an object, may have an invari-

ant. PLEASE specifications may be used in proofs of correctneu. They may also be transformed into

Prolog[5] prototypes. PLEASE specifications may interact with modules written in conventional

languages.

In section 2 of this thesis, I describe the PLEASE programming language in more detail, giving an

example PLEASE specification and its Prolog prototype. Section 3 contains a description of the run-time

architecture of PLEASE. The representations of the PLEASE data types list, set, and map are described

in section 4, along with of a dcecription of the input/output support library and some miscellaneous func-

tions useful in prototype development. In section 5, I summarise and draw some conclusions from the

work done for this thesis.
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2. THE PLEASE PROGRAMMING LANGUAGE

PLEASE is an extension to the programming language Path Pascal[3], which is an extension to

standard Pascal[13]. In Path Pascal, an encapsulated data type, called an object, defines a block which fol-

lows the scope rules of standard Pascal. The object definition includes declarations of local variables

which are only accessible by procedures and functions defined within the object. Entry procedures or func-

tions, called operatio_m, may be called from within the scope containing the object declaration. Objects

provide a facility for defining encapmulated data types; the data within the object may only be accessed and

manipulated outside the object definition through entry operations. In Path Pascal, an initialisation pro-

cedure (initially block) is called when an instance of the object is created. Path Pascal allows asynchro-

nous execution of program structures called processes. Processes communicate through shared data struc-

tures within an object. Each object has a pQth ezpreuion specifying synchronisation constraints for the

processes, functions, and procedures within the object.

In PLEASE, procedures may be specified with pre- and post-condltions written in predicate logic.

Pre-- and post--conditions[21] are logical expressions specifying conditions which must be true when a pro-

cedure is entered and exited. The pre-condition for a procedure specifies constraints on the input parame-

ters and global variables which must be met when the procedure is entered. The post-conditlon must be

true when the procedure is exited; it specifies the conditions the output must satisfy. Data-type invariants

may be specified for objects. The data-type invariant is a logical expression which must be true both

before and after an object is modified. In other words, the data--type invariant is part of the pre- and

post-condition of every operation on an object.

Figure 1 shows a PLEASE specification of the abstract data type staci_ o/ integers. In the

specification, a stack is defined as a Path Pascal object. The operations on a stack are pumh, pop, empty,

and top. The path express|on for the stack specifies that the operations may be p_rformed in any order.

The stack in the example is represented with a list of integers. A list in PLEASE is similar to a list

in LISP or Prolog. It is an ordered sequence of elements, all of which are of a uniform type. The list has

no specified length and may grow and shrink according to the operations performed on it. The basic

$
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type stack = object

path push, pop, top, empty end ;

var s:list of integer;

invariant;

begin true end;

entry procedure push(elmt:integer) ;

pre_conditlon;

begin true end;

post_condition;
begin s' = < element > II s end;

entry procedure pop;

pre_condition;

begin true end;

post_condition;

begin s' = tl(s) end;

entry function top: integer;

pre_condition;

begin not(empty) end;

post_conditlon;

begin s' =s and top' =hd(s) end;

entry function empty :boolean;

pre_condition;

begin true end;

post_condition;

begin

(empty'= true and s = empty_list) or

(empty'= false _nd s <> empty_list)

end;

initially;

pre_conditlon;

begin true end;

post_condition;

begin s' = empty_list end;

end; (* s_ack*)

Figure 1. Stack of Integers in Terms of list of intefer
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operations performed on a list are finding its head or tail, appending two lists to form a new llst, and

determining if a list is empty. When a stack is created, the initially block is executed and the list is
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initialised with an empty list. New elements are pushed on the stack by inserting them at the front of the

flat. Elements are popped from the stack by removing them from the front of the list.

In PLEASE, the notation s' is used to denote the value of the variable e after the procedure is exe-

cuted. Lists are specified in PLEASE by enumerating their elements between the symbols "<_" and "_>"

The notation '",I"is used to specify the concatenation of two lists.

This PLEASE specification may be transformed by an expert prototyper into Prolog procedures

which may then be executed. Prolog[5] is a programming language bued on predicate logic. Prolog pro-

cedurcs are goal= which may be satisfied by a state-space search. Prolog's b_cktracking mechanism

automatically searches the state-space finding any or all possible solutions for Prolog goals. Therefore,

Prolog procedures may be used both to check whether the inputs satisfy the precondition and to find the

outputs which satisfy the post-condition.

Figure 2 gives the Prolo 8 prototype created from the stack object specification. The pre- and post-

conditions for each operation in the stack object have been transformed into Prolog procedures. Each

operation is performed by executing the corresponding pre- and post-condition. Note, particularly, the

Prolog procedure for the function top. The top function returns the element on the top of the stack. The

precondition for the top function specifics that the stack must not be empty when top is entered. Execut-

ing the precondition involves checking for the condition when the function is called. The post-condition

is executed just before the function returns. In the top procedure, the post-condltion unifies the return

value with the head of the llst representing the stack. There are a number of ways a prototyping expert

may code the pre- and post-conditions in Prolog. In this example, since the data type invariant for a

stack is always true, the expert prototyper has not included it in the prototypes. Normally, the invariant

would be checked in the procedure for each pre- and post-condition.

The stack object wu specified with the PLEASE data type list. In addition to lists, PLEASE defines

the data types set and map. A PLEASE set is an unordered collection of elements, all of which must be of

the same type. PLEASE sets are not multisets. The basic operations on sets are determining if an element

is a member of a set, finding the union or intersection of two sets, and determining if one set is a subset of

6
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push_pre_condition :- true.

push_post_condition (S,int (Elmt) ,S_Prime) :-

list_hal (S_Prime,int (Elmt)),

llst tl (S_Prime,S).

push(S,lnt (Elmt) ,S Prime) :-

push_pre_condltion,

push_pos__condl tlon (S,In_ (Elmt) ,S_Prlme).

pop_pre_condltion :- true.

pop_post_condition (S,S_Prime) :-

llst_tl(S,S_Prlme).

pop (S,S_Prime) :-

pop_pre_conditlon,

pop_post_condition (S,S_Prime).

top_pre_condltion (S) :-

empty(S,false).

top_post_condltion (S,Top) :-

1ist_hd (S,Top).

top (S,Top) :-

top_pre_conditlon (S),

top_post_condl_ion (S,Top).

empty_pre_condltion :- true.

empty_post_condltion(S,true) :-

list_empty(S).

empty_post_condltion(S,f&Ise).

empty(Empty) :-

empty_pre_condition,

empty_post_condi_ion(S,Empty).

inlti_lly_pre_conditlon:- true.

initi_lly_post_condition(S_Prime) :-

list_empty(S_Prime).

ini_i_lly:-

initi&lly_prs_conditlon,

initi_lly_pos__condition(S_Prims).

Figure'2. Prolog Prototype for Stack Object
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another.

A map is similar to a relation in mathematics. It is a finite set of domain element - range element

pairs. For each element in the domain there is at most one pair in the map. The pairs may be specified

individually or by a domain set and a function which defines the corresponding elements in the range set.
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Adhering to the strong type checking of Pascal, all elements of a set (including the domain and range sets

of a map) must be of a uniform type.

PLEASE specifications contain pre- and post-conditions written in predicate logic and are useful in

formal proofs of correctness. They are ako easily transformed into executable Prolog prototypes. The

data typ_ list, set, and map are powerful took for data abstraction and should be very useful in specifying

systems. PLEASE specifications are incrementally refined into source modules coded in implementation

lansuages such as C, Pascal, or Ada.
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8. RUN-TIME ARCHITECTURE

As systems are refined from a specification to a real implementation, the modules specified in

PLEASE will be expanded into routines coded in various implementation languages such as C, Pascal, and

Ada. Therefore, there will be modules written in conventional languages and modules consisting of

PLEASE prototypes written in Prolog. Since we do not have a Prolog compiler with an interface to stand-

ard implementation languages, we must be able to link object modules generated from conventional

languages to Prolog procedures.

One way to do this is to provide a standard text interface from a conventional language to Prolog.

The Prolog code is encoded as text in implementation language source modules and sent to a Prolog inter-

preter for execution. Parameters to the Prolog procedures are passed to the module containing the Prolog

code, converted into text, and placed in the Prolog interface call=. The output parameters are converted

from text into the calling language representation and returned. To execute Prolog procedures through a

text interface from implementation language modules, the code for the Prolog procedures must be asserted
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Files

C

ProceN

Prolog's Stdout

<- Output from Prolog
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Input to Prolog ->
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Figure 3. Interprocess Communication - Files Manipulated by C
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in the Prolog data-hue. Then procedure "call=" may be made by sending commands to Prolog to execute

the code.

The PLEASE run-time architecture provides such an interface. The host process is an object pro-

gram created from various source modulu written in an implementation language. A separate process

runs the UNSW Prolog interpreter[25]. Figure 3 illustrates how these processes communicate through

Unix I pipes; the host process sends commands down a pipe to the Prolog interpreter which returns the

results through another pipe.

Figure 4 illustrates how a C program "calls" Prolog. The e_to..plg library provides the standard text

interface from C language modules to Prolog. The file "c_to_plg.h" is included to make all the necessary

declarations and definitions for using the e_to_.plg library. Prolog code is stored in a P_BUF and sent to

the Prolog interpreter with c_to_plg_.¢611. A P_BUF is a C string, up to 4K-bytes in length, and may be

used in standard C string operations. Since these P..BUFs are C strings, they must be terminated with a

"\0". Another P_BUF must be provided to receive the output generated by Prolog.

In this example, the C function gemert adds all the procedure definitions for the stack object to the

Prolog data base. Once these definitions have been added, they remain until the end of execution; there-

fore, the definitions only have to be asserted once. In the test function, two calls are being made to the

procedures in the stack object. The first call pushes the integer "3" onto the stack. The second call uses

the top function to see if it was pushed properly. The first parameter in e_to_plg_c_ll is the input buffer.

The second buffer receives Prolog's output. When this program is run, it outputs '_X----int(3)".

When c_to_pl¢_call is invoked, the input string is sent through a pipe to Prolog's standard input.

The first time c_to_plf_ce_l is executed, it starts the Prolog process and sets up the necessary interprocess

communication channels. Prolog executes the instructions received on its standard input and writes the

output onto its standard output, which is piped back to the calling process. The e_to_plg_call function

should return when Prolog haa written all its output. Since the Prolog interpreter does not flush its output

I Unix is a t,ra_iemark of AT&T Bell Laboratories
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#1nclude <stdlo.h>

#include "c to .plg.h"

assert() /* assert definitions of stack object */

{

P_BUF inbuf; /* Prolog input buffer */

P_BUF ouLbuf; /* Prolog output buffer */

sprin_f (inbuf,"%s 5s 5s Ss 5s _s 5s",

"push_pre conditlon :- true. " ,

"push_post_condltion(S,lnt(Elmt),S_Prlme) :-" ,

" llst_hd(S_Prlme,int(Elmt)), " ,

" lls__tl(S_Prime,S), " ,

"push(S,int(Elmt),S_Prime) :- ",

" push_pre_condition, " ,

" push_post_condition(S,int(Elmt),S_Prime). " ) ;

c _o .plg_c&ll(inbuf,outbuf) ;

/* rest of the code for _he stack would also be asserted */

_est()
{

/* test push and top */

P BUFinbuf;

P BUF outbuf;

/* Prolog input buffer */

/* Prolog output buffer */

sprintf (inbuf,"push (S,int (3),S_Prime) !") ;

c__o_plg_call (lnbuf,outbuf) ;

sprlntf(inbuf,"top(S,X)?");

c_to_plg_call(inbuf,outbuf) ;

printf("_s",outbuf) ;

Figure 4. Excerpt from C Program Testing Stack of Integers

pipe when it has finished writing, the calling routine must tell it when to do so. (7_to__plf_¢_ll sends a flush

command to Prolog after the user's input is sent down the pipe. When the user instructions have been

executed, the flush command causes all output to be sent to the calling process by the operating system.

C_to_.plf_eaLl assembles the output from Prolog into the the output buffer and returns when Prolog has

10



I
I

I
I

|

i

i

I
I
I

completed the flush.

The run-time architecture places some restrictions on the way Prolog modules interact with the file

system. Prolog's standard input and standard output are use<[ for interprocess communication; therefore,

they may not be used for file access. In Unix, each process gets a unique file descriptor for a file. There-

fore, separate processes writing to the same file may overwrite one another's changes. All file processing

may be done from either the implementation language modules or the Prolog modules, but because of the

danger of processes overwriting one another's files, file processing should not be mixed between Prolog

modules and implementation language modules. Figure 5 illustrates that all file processing is done from

the Prolog modules. A library of Pascal-llke file manipulation routines is provided for Prolog.

The ptop[g library provides a Prolos interface for Pascal an_i Path Pascal. Since standard Pascal

does not support strings, the type plgbu/and operations on it are defined. Figure 6 shows how a Pascal

program might execute Prolos code to test the stack specification. The file "ptoplg.h" contains the

definitions necessary for using the ptop[f library. A plgbul is a 4K-byte Pascal string. A plgbu/is

I

i

i

!
!

I
!

C

Process

Prolog's Stdout

<_- Output from Prolog

Prolog's Stdin

Input to Prolog -_

Prolog
Process

User

Files

Figure 5. Interprocess Communication - Files Manipulated by Prolog
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#include "ptoplg h"

procedure test;

vat i,o :plgbuf ;

begin

plgbuflni_(1) ;

plgbufappend(l,'push(S,ln_(S),S_Prlme)!

p_oplgc_ll(i,o);

plgbufini_(i) ;

plgbuf_ppend(i,'top(S,X)?

ptoplgc_ll(i,o) ;

plgbufwrite(o) ;

$');

end;

$');

Figure 8. Calling Prolog from Path Pascal

initialized and cleared with plgbu_nit. Strings are appended to the existing contents of a pigbuf with

plgbufappe_d. These strings must be terminated with a "$". Ptoplgcgll works in the same way as

c_to..plg__all and is, in fact, implemented with e_to_.plg_eall. Plgbufwrite prints the contents of a plgbuf on

standard output. The output produced by this procedure is "X=int(3)".

In order to support the data types list, set, and map defined in the Vienna Development Method,

standard Prol0g representations of these types were defined and libraries of procedures were developed to

support these representations. In addition, a set of file input/output procedures based on those provided

by standard Pascal were defined to supplement the Prolog file input/output model. A library of miscel-

laneous procedures useful in debugging and making standard definitions was aim) developed. These

libraries are loaded automatically when the Prolog interpreter is invoked.

12
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4. PROLOG SUPPORT LIBRARIES

The Prolog support libraries use a standard set of data representations. In the libraries, instances of

PLEASE data types are represented as Prolog terms of the form: "_data_type>(Value)". For example,

the integer "3" would be represented "int(3)". The Prolog term is the most convenient way of representing

structured information and it is useful to have the data type as the principal functor of the Prolog term

that is representing an instance of a data type. This type information can be used as a selector in over-

loaded functions (such as a generic pretty-printlng procedure). The type information is also needed for

making the appropriate conversions of text output from Prolog into representations for other languages.

4.1. Prolog Representatlon of Lists, Arrays, Sets, and Maps

Since the llst is the basic data structuring tool in Prolog, we represent all PLEASE data types in

terms of the Prolog flat. In Prolog, a llst is an ordered sequence of elements. The first element in a llst is

called the head of the llst. The tail of a list is the remainder of a list after its head is removed.

A PLEASE list is represented in Prolog as:

list( [E|ement,;..,Element] )

where all Elemenk are instances of some PLEASE data type. The library of list routines includes pro-

cedures to create an empty list, tind the head and tall of a list, append two lists, determine if two lists are

equal, lind the union or intersection of two lkts, and various operations to index the elements of a list. All

operations on arrays, _ts, and maps are deBned in terms of the llst operations. Therefore, any increase in

the efficiency of the list operations will improve the performance of the operations on other data types.

The array is the principal built-in data structure of Pascal. A single dimensioned array is provided

as a data type in PLEASE. An instance of an array includes its lower and upper bounds as well as the

items in the array:

array(int(Lowerbound), int(Upperbound), list([Element,...,Element]) )

18



The elements of an array may be instances of any PLEASE data type. The library of array routines

includes procedures for determining the size of an array, accessing the individual elements of an array,

checking that two arrays are equal, and modifying the contents of an array.

A set is also implemented with a PLEASE list. The order of elements in a set is not preserved by the

operations in the set library. There are two set representations.

set( llst( _lement,...,Element] ) )

is an instance of an enumerated set. As with lists and arrays, the elements of the set may be instances of

any PLEASE data type. All the operations in the set library manipulate instances of enumerated sets.

There are operations to insert and remove elements from a set, find all the members of a set, take the

union, intersection, or difference of two sets, create an empty set, and determine if two sets are equal. The

sets {4,3} and {3,4} are equal and the equality routine will verify that two mathematically equivalent sets

are equal, even if the elements are not enumerated in the same order. There is also a procedure for deter-

mining if one set is the subset of another.

For convenience, a second representation of sets, called a concise representation is provided. Many

large sets are much too tedious to type in at a terminal (for example, imagine typing in the set of integers

from one to a hundred, or a thousand). These sets may be defined with a "low" or "first" element, a "high"

or "lut" element, and two functions, one to generate the successor to an element of a set, and one to deter-

mine when two elements of the set are equal. For example,

s, (int(1), int(100),int_ ext( _), int_ qual( _) )

together with

int_ ext(int(X),int(XPluzl)).-
XPlusl is X + 1.

int_equal(int(X), int(X) ).
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is a full specification for the set of integers from 1 to 100. The next function and equal function must be

asserted in the Prolog data base 2. Note that the data type for an instance of a concise set is sere. Also,

note that the full procedure head for the next and equal functions are used in the representation and that

the variables in the procedure heads are specified with underbars. To convert this concise representation

to a standard enumerated set, call the seUransform procedure in the library of set operations with the

setc term as the first argument. The second argument should be a variable and will be unified with a com-

pletely instantiated enumerated set. Due to restrictions imposed by the Prolog interpreter currently in

use, it is unwise to have sets with more than about I00 elements.

PLEASE maps also have two representations. The standard representation is a list of ordered pairs:

map( list( [ pair(Element,Element), ..., pair(Element,Element)] ) )

where each element is, again, an instance of any PLEASE data type. The first element in each pair is an

element of the domain set and the second element of each pair is an element of the range set. All elements

of the domain set should be of the same type and all elements of the range set should be of the same type.

The elements in the pair do not have to be related in any way but the procedures in the map library

assume that for any element in the domain set, there is only one corresponding element in the range set.

There are procedures in the map library for finding the domain and range sets of a map, inserting a pair in

the map, finding a range element given a domain element, and changing or removing a pair in the map.

There is also a procedure to transform a set into a map when a function is provided to take domain ele-

ments and produce their corresponding range elements.

The concise representation for maps is very similar to the concise representations for sets. In addi-

tion to the definitions for the next function and the equality predicate, a function definition must be pro-

vided for the mapping of domain elements to range elements. For example,

2 The successor and equality functions for integers are defined in the library of miscellaneous procedures (see Ap-
pendix A).
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mapc(int(1), int(20), next_Lut(_,_), equal_int(__), square(.___ )

square(int(X), int(XSquared) ):-
XSquared is X * X •

is the concise representation for the mapping from integers in the range one to twenty to their correspond-

ing squares. The function map_transform in the map library takes a concise map as the first argument and

returns the corresponding standard map in the second argument.

4.2. Proeedure Classification

The procedures in the Prolog libraries may be classified as functions, generators, or predicates. A

standard Prolog function returns one or more values when given one or more inputs. A generator takes

one or more non-variable arguments and successively unifies the other argument(s) with all the possible

values that satisfy the conditions. For example, eet_membcr, a procedure in the set library, may be used

as a generator. Set_._ember, when used as a generator, takes a set as the first argument and a variable as

the second argument. Prolog will successively unify the second argument with each element of the set dur-

Lug backtracking. For example, the query

set_member(set(|ist([Lut(1),Lut(7),Lut(4),Lut(5)])), X ) ?

will yield the following output:

x=Lut(1)
x--Lut(_)
X=int(4)

X-----int(5).

A procedure is used as a predicate when all arguments are completely ins_a,ttiatcd (i.e. there are no

variable terms in any argument). A predicate is, then, a logical expression that may be included in pre-

and poet-conditions. When the procedure is called as a predicate, it either succeeds or fails. Consider

again set_member. If the first argument is a set and the second argument is an element, set_.member will

succeed only if the element is contained in the set. For example, the query
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set_member{set(li.t([int(3),int(4),int(5)])),int(3) ) :

will succeed, while the query

set_member{ set(list([int{3),int(4),int(5)])), int(1) ) ?

will fail.

To document the use of a Prolog procedure, an annotation of its parameters is used. In the synopsis

of the manual page entry for a library, each argument of a procedure is classified as an input parameter

"+input", an output parameter "-output", a generated output "-generated", or a template output "-

template". An input parameter is a completely instantiated Prolog term. An output parameter is a vari-

able, and the procedure will unify it with a value which is a completely instantiated Prolog term. A gen-

erated output is a variable that will be unified with all possible values on backtracking (see the meLmember

example, above).

For example,

foo( +input, +input, -output)

foo( +input,-generated,-generated)
foo( +input, +input, +input)

tells us that the procedure "foo" can he used in any of three ways. First, if the first two arguments are

inputs, the third argument will receive an output value. This is an example of using • procedure as •/,,nc-

tion. If only the first argument has • value, "foo" will generate values in the second and third arguments.

"Foo" can also be used as • predicate; if all three arguments contain input values, "foo" will either succeed

or fall.

In the future, we would llke to investigate the use of templates as parameters. A template output is

• variable that will be unified with a partially inetantiated Prolog term. A good example of template out-

put and its usefulness is the combined use of the lis__]td and iist_tl procedures from the list library:

17



list_hd(-template,+input)
]ist_tl(-template,+input).

If the second argument of the list_hd procedure is a completely instantiated Prolog term and the first argu-

ment is a variable, the first argument will be unified with a list template, a PLEASE list with a variable

tall and the second argument of the limt__hd procedure as the head. If the second argument of the liet_tl

procedure is a PLEASE list and the first argument is a variable, the first argument will become a PLEASE

list with an uninstantiated head. We can use these together to create a new list.

For example, the query

list_hd( NewList, int(5) ),
list_tl( NewList, list([int(8), int(7), int(8)] ) ) ?

will produce the output

NewList=list([int(5),int (6),int(7),int(8)])

If the second arguments to list_.hd and list_tl are instantiated with the head and tail of a list, respectively,

and the first argument of each procedure is the same Prolog variable, the variable will be unified with a

new list.

4.|. File Input/Output Library

The Prolog file input/output interface is quite different from that provided in conventional

languages. In order to provide a more conventional interface, a suite of Prolog procedures simulating the

Pascal input/output model is provided for use in PLEASE prototypes. The fileio library provides pro-

cedures for opening, closing, reading, and writing files.

A reset operation opens a file for reading. The file is then read from the start. A rewrite operation

opens a file for writing. The file is written from the start. There is no way to append output to the end of

a file. The Prolog interpreter currently in use restricts the number of files open for input and/or output at
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any one time to 15.

The restriction that a reset or rewrite must be performed before reading or writing a file is enforced

in the following manner. A reset on FUename causes a clause "open_read(Filename)" to be asserted in the

Prolog data base. Whenever a rewrite k performed, "open_write(Filename)" is asserted. If the user

attempts to read a file with no open_read clause or write a file with no open_write clause, an error message

is printed, and the procedure returns an error. The cost of this error checking is one assertion for each

open operation and one unlfcatlon for each read or write operation.

The Prolog procedure fileio_e,_al allows the read (j_eio._read and _[eio_readln) and write (fileio_write

and/_leio_wrlteln) procedures to be called with a variable number of arguments. All calls to/_leio_read,

_eio_.rea_In, fileio_wr_te, and j_eio_writeln must be included in filelo_eval as shown in the synopsis of the

manual entry for fileio_]ib.

Fileio._read and _eio_re4dln read Prolog terms from the specified file. Each argument will receive

one Prolog term as a return value. If there are any terms remaining on a line after j_leio_.rea_n has unified

its arguments, they will be ignored. If the end of file is reached, every remaining argument will be unified

with the atom 'end_of_file'. If the file belns read is not terminated with a newllne, these procedures will

hang. Remember that _eio_.resd and )_eio..rea_n must be called within _eio_e_.

Various errors are detected by the filsio library at run-time. Each routine in fileio_Jib has an error

return code. When an error is detected, a message is printed on standard error and the error variable is

unified with the name of the routine in which the error occurred. If no error occurs, the error code will be

set to the Prolog atom 'false'.

4.4. l_tseellaneous Tools

A useful debugging environment is also being developed for the PLEASE system. A set of procedures

for manipulating global variables has been developed. These global procedures are extremely useful in

debugging and may be used to implement a type of call-by-reference parameter passing. A global variable

is a Prolog term with the global variable name (assigned by the get_.global routine) as the principal functor

19



andthe valueasthe only argumentin theterm. For example,a globalvariablecontaininga single

integer,3,mightbe:

global0(int(3) ).

Values can be assigned to global variables and obtained from global variables using operations defined in

the mscJib. A procedure to dispose of a global variable is also provided.

Global variables are useful when debugging prototypes. Long instances of data types are tedious to

type. It may be easier to assign an instance of a data type to a global variable and then dereference the

global variable when its value is needed.

Global variables can also be used to implement call-by-reference in PLEASE prototypes. An argu-

ment to a procedure may be the name of a global variable. The variable may be dereferenced to obtain its

contents. The new value may be assigned to the global variable before the procedure returns. This is also

useful in reducing the traffic in procedure calls made from implementation language modules through the

pipes. Instead of passing the entire value of a variable, the prototype procedure could be coded to operate

on call-by-reference. Only the name of the variable is passed to the procedure. It is then dereferenced,

modified, and stored back in the global variable.
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6. SUMMARY AND CONCLUSIONS

PLEASE is a programming language which supports a methodology similar to the Vienna Develop-

ment Method. PLEASE procedures may be specified with pre- and post-conditions written in predicate

logic. User-defined abstract data types called objects may have data type invariants. PLEASE

specifications may be transformed into executable prototypes written in Prolog. These prototypes are use-

ful in helping the developers deliver a system that satisfies the customers desires. The specifications may

also be used with formal verification techniques to show that an implementation meets the requirements of

the specification.

The PLEASE data types list, set, and map are conveniently represented in Prolog. Libraries of

standard operations on these data types have been developed. A run-time architecture has been developed

which allows Prolog procedures to be executed from standard implementation language modules. A

library of procedures which simulate the standard Pascal input/output model was defined in order to pro-

vide a more conventional i/o interface for PLEASE. A set of procedures to manipulate global variables

was provided to facilitate debugging of prototypes. These procedures are also useful in implementing a

form of call-by-reference in PLEASE prototypes.

The list is the principal data structuring device of Prolog. PLEASE lists were easily represented in

terms of Prolog lists. PLEASE sets and maps were then defined in terms of PLEASE lists. The operations

on sets and maps were implemented in terms of the operations on lists.There is a great deal of room for

improving the efficiency of the library of list operations. Since the other operations were defined with the

library of list operations, improvements in the efficiency of list operations will also improve the efficiency

of operations on sets and maps.

At present, instances of PLEASE data types contain structural type information. However, the

operations on the data type representations are not type-safe. For example, the function list_empty may

be used to create a list with no elements in this situation. It is not possible to determine if the list is to be

a list of integers, a list of characters, or a list of some compound data type. Schemes for run-time type

checking were investigated, but we concluded that the overhead needed to provide this facility was too
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great. We also investigated the run-time checking of name compatibility between types. This idea proved

to be extremely difBcult.

The libraries developed for this thesis are a major step in the implementation of the PLEASE pro-

gramming language. PLEASE should provide an interesting vehicle for the study of top-down develop-

ment methodologies by the SAGA group. We feel these methodologies will enhance the software develop-

ment process.
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Appendix A

The following pages are the UNIX Programmer's Manual

Entries for the programs written for this thesis.
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NAME

array_lib - a Prolog library of array routines for PLEASE

SYNOPSIS

Array representation:

array(int(Lowerbound),int(Vpperbound),list([Element,...,Element]))

array_size(+input,+input)

array._ize(+input,--output)

array__ise(array(...),int(Length))

array_member(+input,+input)

array_.member(+input,-generated)

array_ ember(Element,array(...))

arr ay_equal(+input,+input)

array_equal(+input,-output)
array_ quaZ(array(...),array(...))

array_index(+input,+input,+input)

array..index(+input,+input,-output)

array_index(array (...),int(Index),Element)

array._overwrite(+input,+input,+input,-output)
array_overwrite(array(...),int(Index),Element,arr ay(...))

DESCRIPTION

Array_Jib provides a Prolog library of predicates and functions to operate on arrays.

Array_lib is a library of array routines for the PLEASE system (see please_intro(1)). PLEASE is

an executable specification language. It is an extension of Path Pascal and supports the Vienna

Development Method. In the PLEASE system, programs are specified using pre- and post-
conditions written in predicate logic. These pre- and post-conditions are transformed into Prolog

and executed by the UNSW Prolog interpreter. Calls to array_.lib functions may be included in

these prototypes.

Array_lib is written in Prolog (see Programmi_¢ ia Prolog by Clocksin and Mellish). An array is

represented as a Prolog term of the form:

array(int (LowerBound),int(Upperbound),list([Element,...,Element]))

where each Element is a Prolog term with data type information and a value. See lib_intro(3) for

more information about the Prolog representation of PLEASE data types and the libraries of Pro-

log functions to operate on those data types.

The array library provides a predicate for determining if an element is present in a list. The array

library provides functions to determine the size of an array, the contents of one of the positions of
the array, and to overwrite the contents of one of the positions of the array.

Array_size takes an array as its first argument and returns an integer (int(Value)) whose value is

the size of the array. If its second argument is instantiated to an integer, the function will act as a

predicate to determine if the array is of the given size.

Array_member takes an array as its first argument and generates the members of the array in the

second argument. If the second argument is not a variable, array_member is a predicate that
succeeds if the element is in the array.
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Array_equal is a predicate that determines if two arrays are equal. Two arrays are equal if
corresponding elements are equal. If the second argument to array_equal is a variable, it will be

unified with the array given in the first argument.

Array_index takes an array as its first argument and an integer index as its second argument and

returns the element at that position in its third argument. If the third argument is not a variable,

array_index is a predicate that succeeds if the element is at that position in the array.

Array_overwrite takes an array as its first argument, an integer index as its second argument, a

new element as its third argument, and returns the first array with the new element substituted at
position index in the third argument.

SEE ALSO

lib_intro(3), please_intro(1), encompa88_intro(1), Proframming in Prolof by Clocksin and Mellish

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,
252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.
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NAME

c_to_plg - functions to enable execution of Prolog commands from C

SYNOPSIS

#include "c_to_plg.h"

P_BUF inbuf, outbuf ;

void c_to_plg_call(inbuf, outbuf)
P_BUF *inbuf ;

P_BUF ,outbuf ;

void c_to_plg_debug(debug)
int debug ; /, constant ON or OFF */

DESCRIPTION

The c_to_plg functions provide a means for C programs to execute Prolog clauses.

The c_to_plg layer is one layer in the PLEASE system (see plea_e_intro(1)). PLEASE is an execut-

able specification language. It is an extension of Path Pascal and supports the Vienna Develop-
ment Method. In the PLEASE system, programs are specified using pre- and post-conditions

written in predicate logic. These pre- and post-conditions are transformed into Prolog and exe-

cuted by the UNSW Prolog interpreter.

C_to_plg_call is a text interface from C to Prolog. C and Prolog communicate through strings.

All strings must be terminated with a '\0'. C programs can send commands to Prolog to be exe-
cuted by using c_to..plg_call. The command is placed in the inbuf. The results of the command

executed by Prolog are returned in the outbuf. P_BUF contains a 4K-byte character string.

The c_to_plg_debug function turns debugging on or off for the c_to_plg layer. If debug is set to
ON, a constant defined in the header file, the debugging is turned on for c_to_plg. If value is set to

OFF, also a constant define in the header file, it is turned off.

FILES

${ENCOMPASS }/include/c_to_plg.h

${ENCOMPASS}/lib/c_to_plg.o

SEE ALSO

please_intro(1), encompa,&.intro(1)

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.
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NAME

fileioJib - a library of Prolog routines to simulate the Pascal I/O interface in the PLEASE system

SYNOPSIS

fileio_reset(+input,-output)

fileio_reset(Filename,Error)

fileio_rewrite(+input,--output)

fileio_rewrite(Filename,Error)

fileio_eval(fileio_write(+input,+input,+input,...,+input ),-output )

fileio_eval(fileio_write{Filename,a.r g 1,Arg2,... ,ArgN),Error)

fileio_eval(fileio_writeln(+input,+input,+input,...,+input),--output )

fileio_eval(fileio_writeln(Filename,Argl,krg2,...,krgN),Error)

fileio_eval(fileio_read(+input,-output,-output,...,-output),-output)

fileio_eval(fileio._read (F Uename,a_rg 1 ,krg2,... ,ArgN),Error)

fileio_eval(fileio_readln(+input,-output,-output,...,-output),-output)

fileio_eval(fileio_readln (FUename,A.rgl ,_rg2,...,krgN),Error)

DESCRIPTION

Fileio_lib provides a Prolog I/O library similar to that provided by Pascal.

FUeiolib is a library of I/O routines for the PLEASE system (see plea_e_intro(1)). PLEASE is an

executable specification language. It is an extension of Path Pascal and supports the Vienna

Development Method. In the PLEASE system, programs are specified using pre- and post-

conditions written in predicate logic. These pre- and post-conditions are transformed into Prolog
and executed by the UNSW Prolog interpreter. Calls to fileio_lib functions may be included in

these prototypes.

FileioJib is written in Prolog (see Proframmin¢ in Prolog by Clocksin and Mellish). It provides

functions for opening, closing, reading, and writing files. The I/O routines are based on the Pascal

I/O model.

In the fileiolib, all parameters are input parameters except Argl through ArgN of fileio_read and

Error of all functions. Output parameters must be Prolog variables (ie. first letter is capitalized).

FUenames are UNIX filenames. All filenames and literal output should be enclosed in quotes.

Fileio_reset opens a file for reading. FUeio..reset must be called before a read can be performed on

the file. Reading for the newly opened file begins at the start of the file.

Fileio_rewrite opens a file for writing. Fileio_rewrite must be called before a write can be per-

formed on the file. If the file already exists, its contents will be cleared and writing will begin at
the start of the file.

FUeio_eval allows the read (fileio_.read and fileio_readln) and write {fileio_write and fileio_writeln)
functions to be called with a variable number of arguments. All calls to fileio_read, fileio_readln,

fileio_write, and fileio_writeln must be included in fileio_eval as shown in the SYNOPSIS.

Fileio_read and fileio_readln read Prolog terms from the specified file. Each argument will receive

one Prolog term as a return value. If there are any terms remaining on a line after fileio_readln

has unified its arguments, they will be ignored. If the end of file is reached, every remaining argu-

ment will be unified with the atom 'end_of_.file'. If the file being read is not terminated with a

newline, these function will hang. Remember that fileio_read and fileio_readln must be called
within fileio_eval.
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Fileio_writeand fileio_writeln write their arguments to Filename. Fileio_writeln terminates its

output with a newllne whereas fileio_write does not. Remember that fileio_wrlte and filei0_writeln
must be called within fileio_eval.

Each routine in fileio_.lib has an error return code. If no error occurs, this will be set to the Prolog

atom 'false'. If an error occurs, the name of the routine where the error occurred will be returned.

DIAGNOSTICS

Various errors are detected by the fileio library at runtitne. When an error is detected, a message

is printed on standard error and the Error variable is unified with the name of the routine in
which the error occurred.

SEE ALSO

pleage_intro(1), Programn_ing in Prolog by Clocksin and Melllsh

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.

BUGS

There are some constraints on the I/O library because it is coded in Prolog. There can be at most

15 files open simultaneously. Filenames are UNIX filenames and must be enclosed in single quotes.

There are some special restrictions on the filelo_read function, fileio_read reads Prolog terms.

When the end of a file is reached, the value of every argument read after the end of file will be

'end_.of_file'. If a file is not terminated by a new line, fileio_read will not detect end of file but will

hang instead.
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NAME

lib_intro - a set of libraries of Prolog functions to provide an I/O interface for PLEASE and to
implement PLEASE data types

SYNOPSIS

List representation:

list( [Element,... ,Element])

Array representation:

array(int (Lowerbound),int (Upperbound),list ([Element,...,Element]))

Standard set representation:

set (llst ([Element,...,Element]))

Concise set representation:

setc(LowElement,HighElement,NextFunction,EqualFunction)

NextFunction=FnName(_,_)
EqualFunction_-FnName(___)

Standard map representation:

map (list ([pair (DomainElement,RangeElement),...,

p air (DomainElement,RangeElement)]))

Concise map representation:

mapc(LowElement,HighElement,NextFunction,EqualFunction,MapFunction)
NextFunction--_FnName(_.,_)

EqualFunction=FnName(_,_)

MapFunction--FnName(_,__

Function description:

function_name( +input, -output, -generated)

function_name( argtype, axgtype, argtype)

DESCRIPTION

Libintro describes a set of Prolog libraries of predicates and functions to define and operate on

PLEASE data types; and to provide a Pascal-like I/O interface for PLEASE.
4

PLEASE is an executable specification language. It is an extension of Path Pascal and supports

the Vienna Development Method. In the PLEASE system, programs are specified using pre- and
post-conditions written in predicate logic. These pre- and post--conditions are transformed into

Prolog and executed by the UNSW Prolog interpreter. Calls to library functions may be included

in these prototypes.

List_lib (see list_Jib(3)) is a library of list routines for the PLEASE system (see please_intro(1)).

Array_lib (see array_Jib(3)) is a library of array routines for the PLEASE system. Set_lib (see

set_lib(3)) is a library of set routines for the PLEASE system. Map_lib (see map_Jib(3)) is a library

of map routines for the PLEASE system. FUeiolib (see fileio_lib(3)) is a library of file
input/output operations for the PLEASE system.

PLEASE data types are represented in Prolog as <type>(Value). For example, the integer "3"
would be represented as int(3).
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A list is represented as a Prolog term of the form:

list( [Element,... ,Element])

where each Element is a PLEASE data type, i.e. a Prolog term with type information and a value,

< type > (Value).

For example, after the following PLEASE code fragment has been executed:

type integer_list ------list of integer ;

variable i : integer_list ;

begin
i :_ <1,2_> ;

i would be represented as:

list(lint(1 ),int(2)]).

An array is represented as a Prolog term of the form:

arr ay(int(Upperbound),int(Lowerbound),list( [Element,...,Element] ))

where Upperbound is the highest index in the array and Lowerbound is the lowest. Each Element
is a PLEASE data type, i.e. a Prolog term with type information and a value, <=type > (Value).

Arrays are single dimensioned, but an array of arrays could be constructed.

There are two representations for sets. A set can be described with the standard set notation or
with the concise notation. All set operations are performed on sets in the standard notation. The

concise notation is useful for describing large sets (i.e., the set of integers from 1 to 100). The set

library has a function called set_transform that transforms a set in the concise notation to a stan-

dard set representation.

A standard set is represented as a Prolog term of the form:

set(list ([Element,... ,Element] ))

where each Element is a PLEASE data type, i.e. a Prolog term with type information and a value,

,_ type > (Value).

For example, after the following PLEASE code fragment has been executed:

type integer_set _ set of integer ;

variable s : integer_set ;

begin

s := set_unlon((1},{3,4}) ;

s might be represented as:

set(list([int(3),int(1),int(4)]).

In sets, the order of occurrence of elements is not important. The sets are not multisets; sets only
contain one occurrence of each element.
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To describe a set in the concise notation, the user must provide a low element, a high element, a

function that produces the successor to a set element, and a function that determines when two

elements are equal. For example, the following Prolog code describes the set of integers from ! to
100:

next_int(int(X),int(XP!usl)):- XPlusl isX+I.

equal_int(int(X),int(X)).

Set=setc(int(1),int(100),next.jnt(___),equal_int(_)).

Calling 8st_transform with Set as the first argument will produce the set of integers from 1 to 100

in the standard representation.

A map is represented as a Prolog term of the form:

map (llst([pair(DomainElement,RangeElement),...,

pair(DomainElement,RangeElement)])).

Each domain and range elements are PLEASE data type, i.e. a Prolog term with type information

and a value, < type> (Value).

For example, after the following PLEASE code fragment has been executed:

type souar_..._m__p, m_ ........m,_t',,,m ;,_t_ger t,, ;_*.o.. ;
domain_set -_- set of integer ;

variable s : squares_map ;

d : domain jet ;

function square( x : integer ) : integer

begin

square :---- x,x
end ;

begin

d :---_ 11,2,3,4,5} ;

s :-----map_construct(d,square) ;

s might be represented as:

map(llst([pair(int(1),int(1)),pair(int(2),int(4)),

pair (int(3),int(9)),pair(int(4),int(16)),

pair(int(5),int(25))])).

To describe a map in the concise notation, the user must provide a low element for the domain set,

a high element for the domain set, a function that produces the successor to a set element, a func-

tion that determines when two elements are equal, and a function that takes a domain element

and returns the corresponding range element (the map function). The following Prolog code

describes the mapping from the set of integers from 1 to 100 to their squares:

next_int(int(X),int(XPlusl)) :- XP|usl isX+l.

equaljnt(int(X),int (X)).

squareint(int(X),int(XSquared)) :- XSquared is X*X.

Map-----mapc(int (1),int (100),next.Jnt (_,_),equal_jnt(..,_),square_jnt (..,_).
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Calling map_transform with Map as the first argument would generate the standard representation

for the map from the set of integers from 1 to 100 to their squares. There is also a function

map_construct that takes a set in th_ standard notation and the map function and generates the

map with that set as the domain (see map_Jib(3)).

Each function library has its own manual entry. Each function in the library is described briefly

in the synopsis. The first few lines of the synopsis description contain information about how the

arguments are to be used. For each argument, +input, -output, -template, or -generated,
describes how the argument can be used. An argument that is marked "+input" should be a com-

pletely instantiated Prolog term. In other words, the term should have no variables or underbars.

Arguments marked "-output" and "-generated" should be Prolog variables. A "-template" argu-

ment returns a partially instantiated Prolog term. The most useful instances of-template argu-
ments are the list_hd and list_tl functions that can be used together to create a new list given a

head and a tall (see list_Jib(3)). In many functions, the arguments can be used in various combina-

tions of input, output, and generated. Functions have varying numbers of arguments. For exam-

ple,

foo( +input, +input, -output)
foo( +input, -generated, -generated)

foo( +input, +input, +input)

tells us that the function "foo" can be used in any of three ways. First, if the first two arguments

are inputs, the third argument will receive an output value. If only the first argument has a value,

"foo" will generate (see cenerators, below) values in the second and third arguments. "Foo" can

also be used as a predicate. That is, if all three arguments contain input values, "foo" will either
evaluate to true or false.

Some library functions can he used as generators. A generator takes one or more non-variable

argument(s) and successively unifies the other argument(s) with all possible values that will satisfy

the conditions. For example, set_member may be used as a generator. Set_member, when used as

a generator, takes a set as the first argument and a variable as the second argument. The second

argument will be successively unified with each element of the set during backtracking. For exam-

ple:

set_member(set(list(lint(1),int(7),int(4),int(S)])),X)?

X----int(1)
X=int(7)

X=int(4)

X=int(5).

Some functions can also be used as predicates. A function is used as a predicate when none of the

arguments are variables. When the function is called it either succeeds or fails. Consider again

set_member. If the first argument is a set and the second argument is an element, set_.member will
succeed if the element is contained in the set. If the element is not contained in the set,

set..member will fail. For example:

set_member(set(list ([int(3),int(4),int(S)l)),int(3)) ?
** yes.

set_member(set(list([l)),int(3)) ?
** no.
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SEE ALSO

please_.intro(1), encompasa_intro(1), array Jib(3), list Jib(3), set Jib(3), map_Jib(S), fileiodib(3 ), pro-

log(l), Programming in Prolog by Clocksin and Mellish

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IT, 61801.
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NAME
list_lib - a Prolog library of list routines for PLEASE

SYNOPSIS

List representation:

llst ([Element,...,Element])

listJen(+input,+input)

listlen(+input,-output)

list_len(list([...l),int(Length))

llst_equal(+input,+input)
list_equal(+input,-output)

list_equal(list ([...]),list ([...]))

list_member (+input,+input)
list_member(+input,-generated)

list..member (list ([...]),Element)

llst_hd(+input,+input)
list_hd(+input,-output)

list_hdl-template,+input)

list_.hd(list ([...]),Head)

list_tl(+input,+input)

llst_tl(+input,-output)

list_tl(-template,+input)

llst_tl(list([...]),Tail)

list_index(+input,+input,+input)

llstjndex(+input,+input,-output)

list_index(+input,-output,+input)

listjndex(list ([...l),int (Position),Element)

list_overwrite(+input,+input,+input,-output)
list_overwrite(list([...]),int (Positlon),Element,list ([...]))

list_empty(+input)

list_empty(-output)

llst_empty(llst([...]))

list_append(+input,+input,-output)

list__ppend(list( [...}),list([...]),list([...]))

listJntersectI+input,+input,-output)

listjntersect(list([...]),list{[...]),list{[...]))

llst_dilference(+input,+input,-output)

list_difference(list([...l),list ([...]),list ([...]))

list_union(+input,+input,-output)

list_union{list ([...]),list ([...]),llst ([...]))
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list_.lib ( 3 )

DESCRIPTION

UNIX Programmer's Manual list_lib ( 3 )

List_lib provides a Prolog library of predicates and functions to operate on lists.

List_lib is a library of list routines for the PLEASE system (see piease_intro(1)). PLEASE is an
executable specification language. It is an extension of Path Pascal and supports the Vienna

Development Method. In the PLEASE system, programs are specified using pre- and post-

conditions written in predicate logic. These pre- and post-conditions are transformed into Prolog

and executed by the UNSW Prolog interpreter. Calls to listlib functions may be included in these

prototypes.

List_lib is written in Prolog (see Progra_nmin9 ia Prolog by Clocksin and Mellish). A list is

represented as a Prolog term of the form:

list([Element,...,Ehment])

where each Element is a Prolog term with data type information and a value (i.e.,

<type>(Value)). See lib_intro(3) for more information about the Prolog representation of

PLEASE data types and the libraries of Prolog functions to operate on those data types.

The list library provides predicates for determining if an element is present in a list or if a list is

empty. The list library provides functions to determine the length of a list, the head of a list (its

first element), or the tall of a list (a list containing all the elements except the first). The list

library also provides functions for appending two lists to form a new list; constructing a list con-

taining elements that are in both of two lists; constructing a list containing the elements that are

in one list, but not in another; and forming a list containing the elements of two lists but only one

occurrence of each (i.e. merge two lists).

Listlen takes a list as its first argument and returns an int_eger (int(Value)) whose value is the

length of the list. If its second argument is instantiated to an integer, the function is a predicate

that succeeds if the list is of the given length.

List_equal is a predicate if both arguments are instantiated. It succeeds if the two lists are equal.

If the second argument is a variable, it will be unified with the first argument.

List_member takes a list as its first argument and generates the members of the list in its second

argument. If its second argument is not a variable, list_member will act as a predicate, succeeding
if the element is a member of the list.

List_hd takes a list as its first argument and returns the first element of the list as its second argu-

ment. If both arguments are instantiated, list_hd acts as a predicate which succeeds if the second

argument is the head of the list (the first argument).

List_tl takes a list as its first argument and returns the tail of that list as its second argument (the

tail of a list is the list with its first element removed). If both arguments are instantiated, list_tl

acts as a predicate which is true if the second argument is the tail of the list.

List_hd and list_tl can be used together in the following fashion. Suppose we wanted to create a

new list that had X as its head and Y as its tail. NewList is a template returned by each function.

By giving the template the same name in each function, the Prolog unification operation fills in
the empty slots to produce a completely instantiated list. We could do this with the following
calls:

list_.hd(NewList,X), list_tl(NewList,Y).

List_index is a predicate that succeeds if the Element given in the third argument is at the position

given in the second argument of the list given as the first argument. If the third argument is a

variable, it will be unified with the element of the list at the position given in the second

8?
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argument. If the second argument is a variable, it will be unified with the position of the first ele-

ment in the llst equal to the third argument.

List_overwrite creates a new list by replacing the element of the list at Position (the second argu-

ment) with the element given as the third argument. This new list is returned as the fourth argu-
ment.

List_empty is true if its argument contains no elements. If its argument is a variable, list_empty

will unify it with an empty list.

List_append creates a new list (its third argument) by appending two lists (its first two argu-

ments).

List_intersection creates a new list (its third argument) which contains all the elements that are

present in both of the lists passed in as its first two arguments. Each element will occur only once
in the new list.

List_difference creates a new list (its third argument) which contains all the elements that are in its

first argument and that are not in its second argument.

List_union creates a new list (its third argument) which contains all the elements in the first two

arguments (lists). Each element occurs only once in the new list.

SEE ALSO

lib_intro(3 ), plea_e_iatro(1), encompa_,jr_tro(1), Programming iN Prolo¢ by Clocksin and Mellish

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Minois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.
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NAME

map_lib - a Prolog library of map routines for PLEASE

SYNOPSIS

Standard map representation:

map(list([pair(DomainElement,RangeEhment),...,

pair (DomainElement,RangeElement)]))

Concise map representation:

mapc(LowElement,HighEhment,NextFunction,EqualFunction,MapFunction )

NextFunction=FnName(___)

EqualFunction=FnName(_,_)
MapFunction=FnName(_,_)

map_transform(+input,-output)

map_transform(mapc(...),map(...))

map_construct (+input,+input,-output)
map_construct(set (...),MapFunction,map (...))

MapFunction----FnName(.__)

map_empty(+input)

map_emp ty(-output)

map_empty(map(...))

map_domain(+input,-output)

map_domain(map (...),set(...))

map_range(+input,-output)

map_range(map (...),set(...))

map_.overwrite(+input,+input,-output)

map_overwrite(map (...),pair(DomainElement,RangeEhment),map(...))

map_apply(+input,+input,+input)

map_apply(+input,+input,-output)

map_apply(map(...),DomainElement,RangeElement )

DESCRIPTION

Map_.lib provides a Prolog library of predicates and functions to operate on maps.

Map_lib is a library of map routines for the PLEASE system (see please_intro(1)). PLEASE is an

executable specification language. It is an extension of Path Pascal and supports the Vienna

Development Method. In the PLEASE system, programs are specified using pre- and post-

conditions written in predicate logic. These pre- and post-conditions are transformed into Prolog

and executed by the UNSW Prolog interpreter. Calls to map_lib functions may be included in

these prototypes.

Map_lib is written in Prolog (see Procramming in Prolog by Clocksin and MeUish). There are two

representations for maps, a standard representation and a concise representation. All map opera-

tions are performed on the standard representation of a map. The standard representation of a
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map contains a listthat enumerates the pairs of elements of the map. 'The concise representation

of a map includes the low element in the domain set,the high element in the domain set, the head

of a clause that will produce the "next" element of the domain set, the head of a clause that will

determine if two elements of the domain set are "equal", and the head of a clause that will return

the range element that corresponds to the domain element. The concise representation provides a

means for giving a short description of a large map (too large to enumerate). See [ib_intro(3) for a

description of PLEASE data types and general information about operations on those data types.

The map library provides a predicate for determining if a map is empty. The map library pro-

vides functions for finding the domain or range of a map, overwriting a pair in a map, or finding

the range element that corresponds to the domain element of a map. All of these operations work

on standard map representations. There is a function that converts a concise representation into a

standard representation.

Map_transform takes a concise map representation as its first argument and returns the

corresponding standard map representation as its second argument. It is important to remember

that if a concise map representation is given, the user MUST provide functions definitions for the

next function, the equal function, and the mapping itself.

Map_construct takes a standard set (the domain set, see set_Jib(3)) as its first argument, the head

of a function that describes the map as its second argument, and returns a standard map as the

third arguement. The standard map is constructed by applying the function to each element of

the standard set.

Map_empty succeeds if its argument (a standard map representation) is empty. If its argument is

a variable, it will be instantiated to an empty map.

Map_domain takes a standard map as its first argument and returns a standard set that is the

domain of the map. Map_range takes a standard map as its first argument and returns a standard

set that is the range of the map.

Map_overwrlte takes a standard map as its first argument, a mapping pair as its second argument,

and returns a new map. If the domain element exists in the map, the range element will be

replaced by the new range element in the mapping pair. If the domain element does not exist in

the map, the mapping pair is inserted. If the range element is "", the mapping pair for the

domain element is removed from the map.

Map_apply takes a standard map as its first argument and a domain element as its second argu-

ment and returns the range element that corresponds to the domain element as its third argument.

If the third argument is not a variable, map_apply is a predicate that succeeds if the third argu-

ment isthe range element that corresponds to the domain element.

SEE ALSO

lib_intro(3), please_intro(1), eneompa86_intro(1), Proframmin¢ in Prolof by Clocksin and Mellish

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.
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NAME

msc_lib- a libraryof miscellaneousroutinesforPLEASE

SYNOPSIS

Global variable manipulation

get_gl'obal(-output)

get_global(Name)

allocate_global(+input)

allocate_global(Name)

assign_global(+input,+input)

asslgn_global(Name,Value)

value_global(+input,-output)

value_global(Name,Value)

remove_global(+input)

remove_global(Name)

Useful operations on integers

int_equal(+input,+input)

int_equal(in t (X),int fX))

int_next(+input,-output)

int_next (int (X),int (Y))

int_prev(+input,-output)

int_prev(in t(X),int (Y))

DESCRIPTION

Msclib provides a Prolog library of predicates and functions to perform various miscellaneous
operations.

Msc_llb is a library of miscellaneous routines for the PLEASE system (see please_intro(1)).
PLEASE is an executable specification language. It is an extension of Path Pascal and supports

the Vienna Development Method. In the PLEASE system, programs are specified using pre- and
post-conditions written in predicate logic. These pre- and post-conditions are transformed into

Prolog and executed by the UNSW Prolog interpreter. Calls to msc_lib functions may be included
in these prototypes.

Msc_Jib is written in Prolog (see Programming in Prolog by Clocksin and Mellish). One group of
miscellaneous functions are used to allocate, manipulate, and deallocate global variables.

Global variables are very useful in prototyping PLEASE specifications. The representation of lists

and sets can sometimes be very long and tedious to type. Global variables provide an easy way to

manipulate these large representations. Use get_global(Name) to get a global name. Name will be

unified with the name of the global variable (global0, global1,...). To allocate a global with a

name of your own choosing, use allocate_global(Name). Use assign_global to assign a value to a

global variable. Suppose you wanted to assign the term

"function_names(push,pop,create,destroy)" to a global variable. First type "get_global(Name)?" to
allocate a global variable. Then type
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"assign__lobal(Name,function_names(push,pop,create,destroy)" where Name is the global name
returned by the call to get_global. Use value_global(Name,Value) to find the current value of a

global Variable. Use remove_global(Name) to deallocate a global variable.

This library also contains a set of useful operations on integers. Int_equal succeeds if the two

integer arguments are equal. Int_.next returns the successor of the integer given as the first argu-

ment. Int_prev returns the predecessor of the integer given as the first argument.

SEE ALSO

pleaee_intro(1), eneompa88_intro(1), Programming in Prolog by Clocksin and Mellish

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,
252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, ]I, 61801.
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NAME

ptoplg - functions to enable execution of Prolog commands from Pascal or Path Pascal

SYNOPSIS

#include "ptoplg.h"

var inbuf, outbuf : plgbuf ;

debug : integer ;

plgbufinit(inbuf) ;

plgbufappend(inbuf,'... $') ;

ptoplgcall(inbuf, outbuf) ;

plgbufwrite(plgbuf) ;

ptoplgdebug(debug) ; /* debug is constant ON or OFF ,/

DESCRIPTION

The ptoplg functions provide a means for Pascal or Path Pascal programs to execute Prolog
clauses.

The ptoplg layer is one layer in the PLEASE system (see pleaee_intro(1)). PLEASE is an execut-

able specification language. It is an extension of Path Pascal and supports the Vienna Develop-
ment Method. In the PLEASE system, programs are specified using pre- and post-conditions

written in predicate logic. These pre- and post-conditions are transformed into Prolog and exe-

cuted by the UNSW Prolog interpreter.

Ptoplg is a text interface between Pascal and Prolog. Pascal programs can communicate to Prolog

through plgbufs (Prolog buffers). An empty buffer can be created by declaring it as a plgbuf and
then calling plgbufinit with it as the single argument. Strings can be appended to the end of the

bur with plgbufappend. It is important to note that the strings passed to plgbufappend must end

with a '$'. To clear a buffer, call plgbufinit with the desired buffer as the argument. Plgbufwrite
writes the contents of the buffer on the standard output. Prolog commands can be constructed in

these buffers using the plgbufinit and plgbufappend commands and then sent to Prolog using

ptoplgcall. The command is placed in the inbuf. The results of the command executed by Prolog
are returned in the outbuf. The plgbufs are 4K-bytes in sise.

The ptoplgdebug function turns debugging on or off for the ptoplg layer. If debug is set to ON, a

constant defined in the header file, the debugging is turned on. If debug is set to OFF, also a con-

rant defined in the header file, it is turned off.

FILES

${ENCOMPASS }/include/ptoplg.h

${ENCOMPASS )/lib/ptoplg.o

SEE ALSO

pleaee_intro(1), encompau_i, tro(1), plc_intro(1)

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IL 61801.
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NAME

set_Jib - a Prolog library of set routines for PLEASE

SYNOPSIS

Standard set representation:

set (list([Element,...,Element]))

Concise set representation:

setc(LowElement,HighElement,NextFunction,EqualFunction)

NextFunction_FnName(_-)

EqualFunction=FnName(__)

set_transform(+input,-output)

set_transform(setc(...),set(...))

set_member(+input,+input)

set_.member (+input,-generated)

set_member(set(...),Element)

set_empty(+input)

set_empty(set(...))

set_union(+input,+input,-output)

set_union(set (...),set(...),set(...))

set_intersection(+input,+input,-output)

setjntersection(set(...),set(...),set(...))

set_difference(+input,+input,-output)

set_difference(set(...),set (...),set(...))

set__ubset(+input,+input)

set_ubset(set(...),set(...))

set_equal(+input,+input)

set_equal(set (...),set(...))

set_inser t_element(+input,+input,-output)

set..insert_element(Element,set(...),set(...))

set_remove_element(+input,+input,--output)

set..remove_element (Element,set(...),set(...))

DESCRIPTION

Set_Jib provides a Prolog library of predicates and functions to operate on sets.

Set_Jib is a library of set routines for the PLEASE system (see please_intro(1)). PLEASE is an exe-

cutable specification language. It is an extension of Path Pascal and supports the Vienna Develop-

ment Method. In the PLEASE system, programs are specified using pre- and post-conditions

written in predicate logic. These pre- and post-conditions are transformed into Prolog and exe-

cuted by the UNSW Prolog interpreter. Calls to setlib functions may be included in these
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prototypes.

Setlib is written in Prolog (see Programming in Proloq by Clocksin and Mellish). There are two

representations for sets, a standard representation and a concise representation. All set operations

are performed on the standard representation of a set. The standard representation of a set con-

tains a list that enumerates the elements of the set. The concise representation of a set includes

the low element in the set, the high element in the set, the head of a clause that will produce the

"next" element of the set, and the head of a clause that will determine if two elements of the set

are "equal". The concise representation provides a means for giving a short description of a large

set (too large to enumerate). See lib_ntro(3) for a description of PLEASE data types and general

information about operations on those data types.

The set library provides predicates for determining if an element is present in a set, if a set is

empty, if one set is a subset of another, or if two sets are equal (are made up of the same ele-

ments). The set library provides functions for finding the union or intersection of two sets, finding

the difference of two sets (the set difference A-B is the set of all elements in A that are not con-

tained in B), inserting an element in a set, or removing an element from a set. All of these opera-

tions work on standard set representations. There is a function that converts a concise representa-

tion into a standard representation.

Set_transform takes a concise set representation as its first argument and returns the correspond-

ing standard set representation as its second argument. It is important to remember that if a con-

cise set representation is given, the user MUST provide function definitions for the next function

and the equal function.

Set_member determines if its second argument (an element) is a member of its first argument (a

standard set representation). If the second argument is a variable, set_member will work as a gen-

erator to successively generate the members of the set during backtracking.

Set_empty determines if its argument (a standard set representation) is empty.

Set_union takes two sets (standard set representations) as its first two arguments and returns the
union of those two sets. Set_intersection returns the intersection of the first two sets.

Set_difference finds the difference of its first two arguments. The set difference A-B is all the ele-

ments of set A that are not in set B (A does not have to be a superset of B). Set_difference(A,B,G)

will produce C----A-B.

Set_subset determines if its second argument is a subset of the first argument. Again, both argu-

ments must be standard set representations.

Set_equal determines if its two arguments are equal. Both arguments must be standard set

representations.

Set_.insert_element inserts the first argument (an element) into the second argument (a standard

set representation). The third argument is this new set. If the element is already present, the new

set is the same as the old set.

Set_remove_element removes the first argument (an element) from the second argument (a stan-

dard set representation). The third argument is this new set. If the element was not present, the

new set is the same as the old set.

SEE ALSO

lib_intro(3), please_intro(1), encompa88_intro(1), Programming in Prolog by Clocksin and Melllsh

AUTHOR

Philip R. Roberts, Robert B. Terwilliger, Department of Computer Science, University of Illinois,

252 Digital Computer Laboratory, 1304 West Springfield Avenue, Urbana, IT. 61801.
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Programmers can use differences between versions of a program for a variety of purposes. Some peo-

ple have acknowledged this usefulness, but few have done anything to help the programmer view

differences more efficiently. Many researchers recognize the usefulness of tools which allow the program-

mer to :refer to and manipulate programs in terms of their structure, lexical, syntactic, and semantic. The

plethora of syntax-directed and language-oriented editors and environments surrounding these editors

testifies to this recognition. No attention has been given to extending the ability to the viewing and mani-

pulation of differences.

My thesis is that an interactive difference viewing system, which includes the ability to organize

differences based on the lexical and syntactic structure of the program, can help a programmer use

differences between versions of a program.

1. Why View Differences

A programmer, working in either development or maintenance, may want to view differences

between versions of a program. During program development, several situations may prompt a program-

mer to look at the differences between versions of a program. If several programmers are working on a

project, a programmer who makes a change to shared code could see the changes that he or she has made

by looking at the differences between the version with the changes and the main version. In this way, the

programmer can easily check changes to see if they look complete before inflicting them on the rest of the

group. Checking whether the changes will affect someone else also should be easier.

A programmer might also want to see the differences between his or her own version of a file and

another programmer's version. Each could have a version of the file if they plan to merge the versions

later. Or each might have made changes to separate copies inadvertently. In either case, the versions

must be merged. The programmers can check fairly easily whether the changes are compatible [Heckel,

1978].

A programmer working on maintaining a program has many reasons to look at differences between

versions of a program. One o1' Ilie most common is probably the need to find a new bug. While modifying

a program, a programmer may accidently cause an error. Seeing the differences between the working

I
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version and the nonworking version can help pinpoint the cause more quickly [Heckel, 1978].

A project might have more than one programmer working on its maintenance. A large portion of

maintenance is understanding what the program and the procedures that must change do and what

ramifications a change might have. If a maintainer is planning a modification and has looked at the pro-

gram before, but since then someone else has modified the program, differences could help the maintainer

understand the program again. If the programmer remembers what the program did before the other

changes, looking at the differences between the version with which he or she last worked and the current

version could update his or her understanding of the program more quickly than looking at the entire pro-

gram again.

Viewing differences can also help a programmer see how something _vas done in the past. This could

be useful in two situations. Suppose the way some feature was implemented was changed. After several

modifications to other things, it became clear that the new method was inadequate. It would then Be

necessary to go back to the old method or to try to incorporate some features of the old method into the

new. Simply going back to a version which used the old method is not possible since other changes have

been made. The programmers could look at the differences between the last version using the old method

and first version using the new or the last version using the old method and the current version. These

differences would show the differences between the two methods. (The latter would include unrelated

differences, but might he necessary if the new method has changed since its inception.) Seeing these

differences might also be helpful for a programmer who had another program to modify. If this other pro-

gram uses either the old or new method of the program that has been changed, and the method must he

changed in the other program, viewing the differences for the first program could be instructive.

Related to the second use of the differences mentioned in the previous paragraph_ seeing differences of

one program may help in customizing another. Suppose one program already has several versions for

different machines or operating systems. A second program has been written for one of these systems hut

needs versions for others. The differences between versions for different systems for the first program will

show a programmer the types of things in the second program that might need to change and how they
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might need to change.

One final reason for a maintainer to look at differences between versions is to find a quick fix for a

bug in a version in the field. A version being used by a customer may have a bug which has been corrected

in a version under development. The customer may need to have the bug fixed before the new version is

released. The developers cannot simply give the customer the version under development since it may not

be complete or giving the customer a new version might be against the company's policies. Looking at the

differences between the customer's version and the developer's version may let a programmer find a fix for

the bug without duplicating the effort that already went into fixing the bug in the development version.

Some reasons for viewing differences apply to both development and maintenance. At either stage, a

programmer may have several changes to make to a version of a program. The programmer may elect to

make the changes in stages. Each change or set of changes can be made and tested individually. After

making some changes, the programmer may not remember which changes are complete, which partially

complete, and which not started. The differences between the version the programmer began modifying

and the version he or she has changed give an easy way to check the changes [Heckel, 1978].

After finishing a set of changes, the programmer can use the differences between the old version and

the new one to check that all the changes are documented. The programmer can check that comments in

the code document the changes, as well as seeing if existing comments have changed to reflect the new

situation. The differences are also useful in looking at all the changes so that a record of what has changed

may be kept, as part of a version control system [Thompson, 1980].

In either development or maintenance, going back to an older version may be necessary because of an

incorrect change. However, more changes than just the incorrect one may have been made. Seeing the

differences between the current version and the one that does not have the incorrect change will show the

programmer what other changes will be lost by going back to the old version.

Finally, if a programmer wants to see a history of a program, he or she may want more detail than a

summary of the changes made between each version, but not the text of all the versions. The differences

between versions is a compromise in the amount of detail and may provide what the programmer wants

I



without providing much excess information [Tichy, 1982].

2. Features for a Difference Viewing System

A system for viewing differences between programs should have many features. It should be interac-

tive. The user should be shown one difference at a time and be allowed to skip backward and forward in

the set of differences shown.

The exact difference between the two pieces shown should be highlighted in some way. It is very

frustrating to the user to be shown a long line from each version that look very similar and not to be

shown what makes them different. The user is forced to scan the text to determine the change himself or

herself, a task which the computer could do easily, much more quickly, and with fewer mistakes. If the

difference is flagged for some reason which is not visible, for example, blanks on the end of one line but not

the other, the user will waste quite a bit of time trying to determine that no significant difference exists.

The user should be able to select parts of the program for which differences should be displayed. He

or she may be interested in changes to only certain sections of the program. The viewing system should

not force the user to look at differences which he or she does not want.

The user should be able to select the amount of context shown around a difference. Varying amounts

of context may be needed for the user to identify where the change is.

The difference viewing system should present differences which are divided into logical sections. The

changes to two statements, for example, should be shown as two differences regardless of the relative posi-

tions of the two statements. Changes to declarations and executable statements should be shown

separately. When several changes are thrown together the user must sort out which parts of the

differences shown belong to which logical section.

The system could determine context based on the logical sections of the program. This makes more

sense than using line boundaries. However, the system must not issue a large amount of context. The user

will not want a page of context, so context based on logical units must be tempered by the amount of out-

put it would generate.
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The difference viewing system should be able to summarize differences. The user may only need to

know which procedures have changed, for instance. If none of the procedures in which the user is

interested have changed, he or she need not look at all the differences. In other situations, knowing which

procedures have changed may be enough to remind the user of the changes.

Summaries at various levels should be available. The information that the variable declarations

changed could tell the user that the changes are or are not relevant to what he or she needs to know.

The user should be able to select the level of the summary from a set of levels. I-Is or she may be

looking for changes in variable declarations, or may know which procedures changed but want to see what

statements have changed. The user may want to skip summaries and just see the text that changed.

The choices of summaries should be interactive. The user should be able to get a summary of which

procedures, for example, have changed, then ask for more detail, that is, a summary at a lower level, for

some of the procedures. Which summaries have changes shown in more detail should be selectable. The

system should not force the user to see more detail for all the procedures. The ability to ask for more

detail for particular differences should be possible until the text of the differences is displayed.

The system should allow the user to simply ask for more detail without specifying a level. The sys-

tem should select a reasonable level of detail to present to the user. If the change is such that several lev-

els will present nearly the same information, the system should use the lowest of these levels. The user

should not be shown several levels which do not appreciably increase the information provided.

In order for the summaries to be useful, each construct to appear in summaries should have a name

and a scheme by which an identifying name for a specific instance of the structure can be found. The

name of the kind of construct is apparent. These would include procedure, variable declarations, assign-

ment statement, while statement, and expression. Clearly each instance must get an identifying name. If

three procedures change, having a system print "a procedure changed" three times is not very useful.

Finding an identifying name for procedures is easy; but the system also needs a scheme for naming assign-

ment statements, variable declarations, while statements, and other constructs. Some of the possible infor-

mation the system could use as names includes: for a statement, the kind of statement augmented with
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some distinguishing feature, for example, assignment statement plus the variable whose value changes, for

a while, if, or repeat, the kind of statement and the condition, for a case statement, case and the case

expression, for a declaration, the name of the object declared. If versions for a letter, divided into para-

graphs, sentences, and words are compared at the paragraph level, the text of the first sentence or the first

words of the first sentence might identify the paragraph. In a list of objects with no particular distinguish-

ing feature, the position, or number, within the list of the object which changed could be used.

These names should also be used for labeling differences so that the user can tell where the change is

located. The change could be labeled by the procedure in which it is contained or by labels for all the

summary levels which contain it, or some subset of this. The list of all the labels would be more informa-

tive, but could get too large to be displayed practically.

Another desirable feature for a system that compares programs is the ability to ignore formatting

information. For virtually all reasons that a programmer wants to see differences between program ver-

sions, the formatting is irrelevant. With pretty printing programs and editors that format programs, hav-

ing different formats for versions becomes more likely. The difference system should not produce

differences which will never be important.

The system should be able to produce the differences quickly. A faster system will encourage more

use.

To improve speed, the system should take advantage of existing, available information. An example

of such information is the differences stored in a version control system. If this information will speed up

the difference system, it should be used.

The difference system should be able to find differences between any two versions of a program.

Differences involving the most recent versions will probably be needed most frequently, so having these

combinations favored could improve ei_ciency, but all combinations should be possible.

For all the options which the system has, the user should not have to specify which option to use.

The system should have reasonable defaults for all options. This will save time for the user.
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In addition, the difference system should incorporate principles of good interface design. Also, it

should be able to use screen capabilities of terminals when possible.

In sum, a difference viewing system should be interactive, highlight the exact difference, allow the

user to restrict which parts of the program have differences shown, allow selection of the amount of con-

text to show, divide differences into logical sections, use these logical sections to determine context when

practical, summarize differences at various levels, allowing the user to select the level if he or she chooses

and to interactively elect to see more detail for some differences, identify the location of differences With

labels from the summaries, be able to ignore formatting changes in finding differences, be fairly fast, use

available information from other sources, and work with any version from a version control system.

A difference viewing system should also be integrated with other tools. The interactions between the

difference system and the other tools will help both.

The difference system should be integrated with an editor. This should allow the user to easily see

differences between the version being edited and other versions. The user will then be able to see what

changes he or she has made.

The difference system should provide the editor with an undo command based on the differences. A

difference-based undo allows the user to view differences and select which to undo. (The user could be

allowed to select differences to undo after having viewed all the differences, or be allowed to select

differences to undo as they are displayed.) Undoing a difference consists of deleting the text that is in the

new version and replacing it with the text in the old version. The changes that can be undone are limited

by what versions for the file exist.

The undo should take advantage of the difference system dividing and summarizing differences.

Dividing differences lets the user choose a smaller unit to undo. If changes were not divided, the user

would not be able to undo one change without undoing all the others. Dividing differences makes a

difference-based undo more responsive.

Summarizing differences also makes a difference-based undo more convenient. If all the changes in a

procedure need to be undone, the user can get a summary of changes at the procedure level and ask for

I



that difference, which could contain many textual differences, to be undone. The dlfference-based undo

operating on the summary level allows the user to restore one procedure, say, to a previous state witl_out

having to request the undoing of each difference individually.

The user should be able to take the version he or she is editing, choose some differences to undo, and

easily create another version based on the current version with the selected differences undone. Thls would

help a programmer in debugging. If a bug has appeared, the programmer would be able to selectively

eliminate changes in a temporary version without disturbing the current version. He or she could then test

the temporary version. If the bug was still present, the programmer could go back to the undisturbed ver-

sion and try undoing some other changes until the one(s) that are the source of the bug are found.

The editor with which the difference system is integrated should be a structural, e.g., syntax-directed

or language-orlented, editor. This kind of editor will have the program represented in some tree form,

such as an abstract syntax tree or parse tree. This would make dividing the differences into logical unlts

or summarizing the differences easier for the difference system° For these tasks, if the program were not

already represented in a tree form, the difference system would have to get it into such a form itself. Hav-

ing the tree structure kept makes the difference system f_tst_er and more flexible.

Having a structural editor also allows the difference system to get a little extra information. The

editor can fairly readily record which parts of the program have changed. This can help the difference sys-

tem identify changes more quickly.

Another tool with which a difference system should be integrated is a version control system. As

mentioned before, the difference system should be able to compare any two versions. Also, the difference

system should use information available in the version control system. The version control system will

store multiple versions by storing differences between versions. If the user asks to see differences for ver-

sions for which the difference is stored in the version control system, the difference system should use this

to locate the differences. Further, if a sequence of differences between the versions exists, the difference sys-

tem can combine these to locate differences in the two versions. Using the information in the version con-

trol system will make locating differences faster.
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The difference system can also help the version control system in merging two versions. The

difficulty with merging comes when a conflict arises--two versions insert different text in the same place,

or one version deletes text around the location at which another version inserts, for example. The

difference system can help in several ways.

Use of the divisions of the differences and summary levels can help when two versions both have code

inserted at the same location. The differences can be marked to indicate what kind of section contained

them. If the two sections to be inserted came from different kinds of sections, this could order the sections.

For example, suppose one version had declarations inserted at the end of the declaration section and

another had statements inserted at the beginning of the executable statements. To a merging program

which considers the program as text, this would look like two insertions at the same spot. But if the

differences were marked with which kind of section they were, a merging program could find the kind of

section on the left and right of the point of insertion and place the sections by the same kind of section as

that from which they came.

Dividing the differences into logical sections would help if each version had inserted both declarations

and statements in the same spot. The new declarations and new statements, though contiguous, would be

divided into separate differences. Thus in the merged version both new declaration sections could be

placed together, before the new statements.

If the difference system is integrated with a structural editor, differences can be done on the tokens.

Having this eliminates some conflicts. Changes which were made to the same line in two versions and

which are separated by a token will not conflict. This situation could arise commonly when elements are

added to a list, such as a list of variables being declared or the definition of an enumerated type.

When conflicts arise, the user must look at the problem area and edit the merged version so that it is

correct. This should be interactive in a manner similar to difference viewing. The interactive system could

take the user from one conflict to another. Allowing the user to easily see other parts of the program so

that he or she can see the results of merging that did not cause a conflict but may bear on how to resolve

one is important. The conflicts should be labeled by their locations. Getting summaries of where conflicts
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are located might also be useful. With several versions being merged, the person attempting to resolve

conflicts may not know enough to resolve them all. The user could select the conflicts in the procedures

which he or she changed and let other people resolve others.

Having conflicts resolved with the aid of a special tool allows commands specific to merging to be

included. The specific commands would depend upon how conflicts are represented. Some possibilities

include leaving the code as it is, selecting the text of one version or the other, or asking for the text from

one version followed by that from the other.

Another tool with which a difference system could be integrated is a program slicer. This will make

the difference system more useful, but not the slicer. A program slicer takes a point in the program and a

set of variables and finds all the statements which affect the values of those variables at that point. In

essence the result is a program which would give as results the values of the set of variables at that point.

With a program slicer integrated with the difference system, the user should be able to ask for only

differences that affect the value of selected variables at a certain point. This might reduce the amount of

text that the user would need to see.

The difference system can also be integrated with any system which does incremental analysis which

can be batched. Some possible tools that are amenable to incremental analysis and whose results are not

needed immediately after each change include an incremental recompilation system, a tool which performs

consistency checks between the source code and its documentation or specification, a test case generator, a

test coverage analyzer (perhaps with data flow analysis), and software management systems. Use of one

tool should not interfere with the use of any other tool. A new tool could be added to this system easily.

8. Previous Work

8.1. Uses of Differences

Differences between strings have many uses. They are used extensively in biology and speech recog-

nition. The first use in computer science, as indicated by Sankoff and Kruskal [Sankoff and Kruskal, 1983]

and Hall and Dowling [Hall and Dowling, 1980], was in spelling correction. The problem is to find a
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correct spelling of a misspelled word. The solution is to find, out of the set of possible correct words,

either one that is the closest or one close enough to the incorrect word.

Several methods are based on abbreviating the words. Blair [Blair, 1960] devises an abbreviation by

eliminating letters based on their positions in the word and the letters' frequency of occurrence. Words are

matched based on their abbreviations. If no match is found, the system gives up. If more than one match

is found, larger abbreviations are used until only one match exists.

Davidson [Davidson, 1962] also uses abbreviations to retrieve names in an airline reservation system.

His system takes the first letter of the surname, the first three characters remaining after eliminating all

vowels, ha, t0s, and ys and removing one occurrence of any letters doubled after this. The last letter

included is the first initial. Names are retrieved solely from the abbreviation. Additional information,

such as the person's phone number is used, if available, to eliminate multiple retrievals. If this is not pos-

sible, the operator receives all the matching records and selects the correct one.

Davidson's system does not rely on always finding a match. If no record exactly matches the abbre-

viation, the records which best match the abbreviation are retrieved. How good the match is is determined

by listing the character positions that match in both abbreviations and finding the length of the longest

increasing subsequence. This is also the length of the longest common subsequence of the two abbrevia-

tions.

In general, Blair's and Davidson's methods are applicable only to spelling. They offer no help in

comparing words or other strings for any other purpose.

Faulk [Faulk, 1964] defines three measures of similarity between strings. Each is a number between

zero and one, with a larger number indicating more similarity. The three numbers indicate the extent to

which the strings share common elements, the common elements are in the same order, and the common

elements are in the same positions. These measures help choose the best match out of a list, and can sug-

gest how similar two strings are, but are not helpful in showing the differences.

Damerau's [Damerau, 1964] method attempts to correct words with one typing error: a substitution

of one character for another, insertion or deletion of one character, or transposition of two (adjacent)

i



12

characters. His method is specific to checking if a word could be derived from the given word by one of

these errors. It also includes a few steps to decrease the number of words in the vocabulary which must be

tested.

Alberga [Alberga, 1967] took several spelling correction methods and a set of misspellings from spel-

ling exams to see which method did the best job. The results of this study are not interesting for finding

differences, but the paper does give an interesting summary of various spelling correction methods.

Morgan [Morgan, 1970] is interested in correcting spelling and typing errors to decrease the number

of runs a user must make to get job control and programs correct. His method uses semantic information

to narrow the search for possibilities. Then Damerau's method is applled to find a correct word from the

list of possibilities. The semantic information that Morgan uses includes what items are in the follow set

and which identifiers in the symbol table are of the correct type.

Another area in which differences are used is in correction of syntax errors. Several methods use a

cost function to help determine which correction to make. The cost, in essence, is based on the edit opera-

tions needed to transform the input to one of the possible corrections. Anderson, et al. [Anderson, et al.,

1983], Graham and Rhodes [Graham and Rhodes, 1975], and Mickunas and Modry [Mickunas and Modry,

1978] all use the costs of inserting and deleting symbols to find the cost of a correction. These methods do

not use the techniques for getting the minimum edit distance, but the ideas are similar.

Tai [Tai, 1978] actually uses one of the methods of minimizing edit costs with insertions, deletions,

replacements, and transpositions allowed. After finding possible corrections, the method to find the edit

cost is applied to find the correction which is closest to the input text.

Perhaps the most widely recognized use of differences in computer science is in storing multiple ver-

sions of a file. If someone wants to save several versions of a file, the versions will usually have more in

common than di_erent. Instead of saving the entire text of all versions, which would usually consist of a

large amount of common material, one version can be saved in its entirety along with enough information

to produce the other versions from this one. If versions are kept in this way, a set of tools should store the

information necessary to retrieve versions and the user should be able to specify the version desired and
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have it retrieved automatically. As long as tools exist to keep track of versions, they usually perform

other functions, such as keeping logs of what changes have been made and providing exclusive use of a ver-

sion to a user.

Despite the savings in space that can be achieved by using differences some systems which save ver-

sions save the complete text of each version that is kept. The Distributed Programming Assistant [Ram-

say, 1983] keeps all versions of programs and also all the supporting files that are ever produced. The Pro-

ject Automated Librarian [Prager, 1983] stores entire copies of versions, but saves only a set number.

Other systems store multiple versions and save the common parts only once but do not use

differences. These systems keep all the versions in one file and have control information so that the

appropriate lines are used for the desired version. One system [Stanaway, et al., 1979] uses conditional

assembly to get the correct statements for the desired version. Another [Hague and Ford, 1976] keeps the

file with control information and has a tool to extract the version needed.

Cargill [Cargill, 1980] has developed a system that uses a hierarchical directory structure to store

versions. The system was developed to store the programs for an operating system intended to run on

different machines. Each machine has some functions which must be customized. The system is set up

with a directory for each function. In it is the source for the common function. Any machine that needs

something else has a subdirectory with the files it needs. Some space is saved since common files are stored

once, but anything in common between the versions for specific machines will be duplicated.

Many systems use differences saved as edit scripts to save multiple versions. A good example of this

is SCCS, the Source Code Control System [Rochkind, 1975]. It saves the original version. Each additional

version is saved by storing the difference between it and the version before it.

Several systems have been patterned after SCCS. Two of these are the systems developed by Peder-

sen and Buckle [PeJ_r_n and Buckle, 1978] and Bauer and BirchaU [Bauer and Birchall, 1978]. Pedersen

and Buckle's system allows a tree structure of versions. Bauer and Birchall performs many management

functions as well as merging differences in object files when possible.
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Another system which uses differences to save multiple versions is RCS, the Revision Control System

[Tichy, 1982]. RCS allows a tree structure of versions. Instead of storing the oldest version and differences

to generate the more recent version (forward deltas), RCS stores the most recent version and differences to

generate the older versions (backward deltas). This allows the newer versions, which presumably will be

accessed more frequently, to be generated more quickly.

Another version control system [Kaiser and Habermann, 1983] concentrates on specification and

management issues, rather than space considerations. What method it uses for storing versions is not

stated.

A fourth use of differences in computer science is in updating text which is already at the receiving

site. Differences can be used to update programs, manuals, and display screens. When a site has a version

of a program or data set and needs a new version, the differences will usually be shorter and can be

transmitted more quickly.

Screen oriented programs also use differences to attempt to reduce the amount of characters

transmitted to update the screen display. Gosling [Gosling, 1981] describes an algorithm and a heuristic

for updating the display of a screen editor, if terminal has certain abilities.

Some attention has been given to providing differences that can be viewed. Suppliers of operating

systems often provide a general utility for finding differences between text files. UNIX [UNIX User's

Manual, 1984] and VMS [Digital Equipment Corp., 1985] are some examples of operating systems which

provide such a tool.

A tool under development that helps display differences between versions of programs is an editor

that edits multiple versions of a program [Kruskal, 1984]. The user of the editor specifies which versions

to edit. Any changes made apply to all the versions being edited, or a subset of those if the user so

specifies. Parts of the text that differ among the versions being edited are highlighted. The editor has a

restore command that lets the user put text from an older version into the versions being edited.
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8.2. F|ndlng Differences

The use of general difference finding algorithms seems to have developed in biology before developing

in computer science. The first mention in the computer science literature seems to be in 1974 in two

separate papers [Sellers, 1974] [Wagner and Fischer, 1974]. Sellers presents an algorithm that takes

O(m2n) time and space, where _ and n are the lengths of the strings being compared. This algorithm finds

the smallest number of changes (deletion of a character from either string or replacement of one character

with another) needed to convert both strings to the same string. Wagner and Fischer present an algorithm

to find the number of insertions, deletions, and replacements of single elements needed to convert one

string into the other. Their algorithm uses O(_a) time and space.

Lowrance and Wagner [Lowrance and Wagner, 1975] give an algorithm for an extension to Wagner

and Fischer's problem. They allow swapping two adjacent elements or two elements that would-be adja-

cent after all the deletions are performed but before any insertions are done. This algorithm also uses

O(m_) time and space.

All the algorithms mentioned so far are based on a dynamic programming approach to the problem.

The solution is found for substrings of the two strings. One element is added to one substring and the

solution for the new substrings is found based on the solution for the smaller substrings. The substrings

used are prefixes (or sUiFLXeS)of the two strings. The solution is found for each pairing of substrings. So

each entry in an _ X n (or (_ + 1) X (_ + 1) if zero length prefixes are included) matrix is found. Masek

and Paterson [Masek and Paterson, 1980] attempt to find the solution more quickly by precomputing all

possible differences between costs in the matrix for submatrices, then combining the appropriate precom-

puted values for the particular strings. This produces an algorithm that executes in time of O(m_/loga),

but which can only be used in problems with a finite alphabet.

Heckel [Heckel, 1978] proposes a method which is not based on dynamic programming. Heckel

describes his method in terms of files and lines in the files. The algorithm enters each line into a symbol

table and records information, such as the number of occurrences of the line in each file, about it. If a line

in the symbol table has exactly one occurrence in each file, the occurrences are considered the same. Lines
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which are identical and are adjacent to lines considered the same are considered the same. Any other lines

are considered to be inserted or deleted. This method finds lines that have moved as well. Its weakness is

in relying on having many lines with exactly one occurrence in each file to get a good match.

Tichy [Tichy, 1984] has developed a method for finding block moves. This method includes any ele-

ment in both strings in a block move. This minimizes the number of elements inserted. Then the number

of moves to generate the rest of the string is minimized. By using a suffix tree for the string, the algorithm

can run in tlme and space of O(m + n). The advantage of Tichy's method is that it attempts to reduce the

amount of space the editing commands take. Presumably an insert command, which must include tile text

to insert, takes more space than a move command. A disadvantage is that the original string will not be

accessed sequentially, and so, unless it can be accessed randomly, rebuilding the new string will normally

require multiple passes through the original.

A problem closely related to the one of finding an edit script to convert one string into another is

that of finding the longest common subsequence of two strings. The solution to the longest common subse-

quence problem can be used to produce an edit script by inserting elements in the new string but not the

common subsequence and deleting elements in the original string but not in the common subsequence.

Likewise, any method that finds edit scripts with insertions and deletions can be used to find the longest

common subsequence. Methods that includereplacement and transpositioncan alsobe used by settingthe

costof a replacement or transpositionabove the costof an insertionand deletiontogether so that inserting

and deletingwillalways be preferred.

Hirschberg [Hirschberg,1975] takesFischer and Wagner's algorithm and notes that the values of the

ith row depend only on the (i- 1)th row. Thus the length of the longestcommon subsequence can be

found using O(m + a) space. Finding the sequence itselfismore difficultbut can also be done using a

linearamount ofspace.

Hunt and Szymanski [Hunt and Szymanski, 1977] developed an algorithm that works well when the

stringsmatch infew places. The method keeps a llstfor each positionin one stringof matching locations

in the other string.It takes O((r + n)loga)time and O(r + a) space,where r isthe number of pairs of
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matching positions.

Hirschberg [Hirschberg,1977] developed two other algorithms. One works well when the length of

the longestcommon subsequence isshort and the other works well when itislong. Ifp isthe length of the

longestcommon subsequence,the firstruns inO(pn + nlogn) time and the second in O(p{m + 1 - p)logn)

time.

Nakatsu, et al.[Nakatsu, et al.,1982] have another algorithm that works well forstringswith a long

common subsequence. Their algorithm compares (m - p)n elements of the stringsand computes {p+ 1)(m

- p % 1) elements of a two dimensional array,where again p isthe length of the longestcommon subse-

quence.

Finally,Hsu and Du [Hsu and Du, 1984] presented some improvements of two known algorithms.

Where Hirschberg'salgorithm uses a linearsearch,theirsuses a binary search. They also recommend a

fastermerging algorithm forpart ofHunt and Szymanski's algorithm.

Several people have worked on bounds on the complexity of the longestcommon subsequence and

stringeditingproblem. Assuming the only type of comparisons allowed tellwhether two elements in the

strings are equal or not equal, Aho_ Hirschberg, and Ullman [Aho, Hirschberg, and Ullman, 1976]

developed three lower bounds on the number of comparisons needed to solve the longestcommon subse-

quence problem. Ifs isthe sizeofthe alphabetand both stringsare of length _ then the lower bounds are

8/2(n + 8/2) if s _ a, S/4n8 if a < 6 < 4/3n, and a2 if 4/3a _ 8. If no comparisons between elements in

the same string are allowed, the lower bound is r_2 if 8 _ 3.

Wagner [Wagner, 1975] looked at the extended string editing problem, that is producing an editing

sequence of insertions, deletions, replacements and transpositions that will convert one string into the

other. He let some of the operation costs be infinite and showed that some of these problems are NF-

complete.

Wong and Chandra [Wong and Chandra, 1976] used the same comparison model that Aho, Hirsch-

berg, and Ullman used. Also, they assumed an arbitrarily large alphabet. With these assumptions, the

problem of developing an edit sequence with insertions, deletions, and replacements has a lower bound on

I



18

the number of comparisons of O(ma).

Hirschberg [Hirschberg,1978] looked at the longest common subsequence problem again. Ifcom-

parisons between stringelements can return a resultof lessthan, equal,or greaterthan, a lower bound on

the number of comparisons needed isnlogn where n isthe length of both strings.

Attention has also been given to the problem of comparing trees. Selkow [Selkow_ 1977] developed

an algorithm patterned afterSankoff's[Sankoff,1972] and Wagner and Fischer's.It allows changing the

labelof a node and insertionand deletionof leafnodes. This isnot to say that only nodes that are leaves

in the originaltreemay be insertedor deleted,but rather,at the time that a node isinsertedor deleted,it

must be a leaf. So to deletean interiornode, allitsdescendents must be deleted. The algorithm takes

O(m_) time and space_ where m and n are the number of nodes in the original and new trees.

Tai [Tai, 1979] developed a less restrictive algorithm. It allows interior nodes to be inserted or

deleted. When an interior node is deleted, its children are attached to its parent in the deleted node's posi-

tion. If an interior node is inserted, it may take some of its parent's children as its own, in such a way

that deletion is the inverse of insertion. This algorithm operates in O(mnh2z _) time, where h and i are the

heights of the original and new trees.

Wilhelm [Wilhelm, 1981] was interested in finding a mapping between tree nodes that would map all

nodes in the original tree with a node in the new tree with the same label to some node in the new tree and

preserve the most parent-child links in the tree. The algorithm is designed for trees in which all nodes in

the Original tree have unique labels and all nodes with the same label have the same number of children.

Wilhelm gives an analysis of the time the algorithm would take for two types of trees, a complete tree and

a degenerate tree, both having all interior nodes with r children. If h is the height of the original tree and

is the number of occurrences of the nodes in the original tree in the new tree, the time for the complete

tree is O(a(nr) h) and the time for the degenerate tree is O(n h+ l(r -- 1)).

Tichy [Tichy, 1985] has developed an unpublished algorithm for finding differences between trees.

The algorithm assumes that each node of the same type has the same number of children. The trees are

linearized by taking the preorder traversal. Then an algorithm to find the differences between strings is
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applied.

8.8. Problems with Exlsting Work

Although some researchers have recognized the usefulness of differences between versions of programs

'to programmers, little emphasis has been given to differences. Work with differences has dealt mainly with

their use in storing versions so that less space is required than would be if versions were stored in their

entirety. For programmers wishing to view differences between program versions, little support beyond

the rudimentary tools can be found.

Version control systems, though they have the versions that would be compared and sometimes use

differences to store these versions, for the most part do not provide facilities for programmers to see

differences between versions. Some exceptions, such as RCS and SCCS, exist. These both provide a com-

mand which will show the differences between two versions. The commands check out the desired versions

and use a UNIX diff command to compare them. It seems that other version control systems do not

attempt to help programmers see differences.

When differences are provided to the programmer, they show what sections have had changes made

to them, without regard to whether several unrelated changes have been made to the section. Most

difference tools also cannot distinguish between an actual change in the program and a change in the for-

mating. Current algorithms really can do no better than this. With a program represented as text, the

algorithms have no basis for deciding anything beyond which sections have changed. With many tools and

environments treating program as trees--abstract syntax trees or parse trees--doing a better job should be

possible. The four existing tree comparison algorithms do not seem up to the task.

Wilhelm's algorithm is clearly inappropriate. The requirement that all nodes in the original tree

have unique labels would not be met.

Selkow's algorithm is not general enough. For both abstract syntax trees and parse trees, interior

nodes can be deleted and inserted without all the descendents being deleted. An example of this is chang-

ing a repeat statement into a while statement. The statement block, which could be large, would not

I
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change.

Tichy's algorithm is designed more to store versions of trees compactly than to find differences to

display. Changes made to several adjacent subtrees would all be one difference to this algorithm. This is

the same problem the string comparison algorithms have. Also, the restriction to trees in which all nodes

with the same label have the same number of children would generally be a problem. The grammar for a

tool using a parse tree might have multiple rules with differing numbers of elements for one nontermlnal.

Abstract syntax trees and parse trees using regular right part grammars also would have nodes with the

same label and differing numbers of children. A good example of this is lists of objects.

Tai's algorithm has the most promise. It is general, so that it will produce differences for parse trees.

However, it may not produce the required information. Because changes can be adjacent, changes that

should be divided may still appear as one difference. Alternately, changes might be reported at a lower

level than the person viewing the differences would want. This algorithm is also too general. Changes

made to a parse tree are more restricted than deleting or inserting any node. It should be possible to dev-

ise an algorithm specific to the type of changes that occur for parse trees and that would be faster.

4. Experience

The SAGA editor has a simple system which generates differences between versions of a program.

The user begins by telling the system to use the version he or she is currently editing as the base version.

All differences will then be shown relative to this base version until the user sets another version to be the

base.

As the user edits the program, the editor records where changes are made by setting a field in the

terminal nodes. The modified fields are set in nodes which are inserted and in nodes whose neighbors are

deleted. The difference system uses the modified fields to locate the changed sections of the program. The

system saves the information about the differences and reuses it if the user asks to see the differences again

before he or she makes additional changes to the program.
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The displayof the differencesisscreen-0riented.The differencesare displayedone at a time. Ifthe

text does not fiton one screen,the user may scrollitup or down. The screenisdivided between the part

of the differencethat shows what the program currentlyhas (the new part) and what ithad when the base

was set (theold part). These parts can be scrolledindependently or together. The system also highlights

the tokens which have changed (asopposed tothe contextwhich the user requested around the change).

The differencesystem also includes the potential for an undo command. The user can selecta

differenceto undo. The system willproduce a scriptwhich Will deletethe text in the new part of the

differenceand reinsertthe text that had been inthe program (the old part of the difference)for the editor

to execute.

5. Proposal

Many of the featuresof a good differencesystem would be straight-forwardto implement. Either

similarfeaturesexistin other types oftoolsormethods for gathering and using the necessaryinformation

are clear.

Other featuresare not as easy. I want to concentrateon two of these: dividingdifferencesinto logi-

cal sectionsand summarizing differences.Three problems relatedto these are determining the conditions

that the setsof nonterminals for dividingdifferencesand for summarizing differencesmust meet, devising a

scheme for storingthe methods to find names for the summarized sections,and determining criteriafor

deciding at what levelsummaries of differencesshould be made.

Many programming environments now includeprogram editorswhich keep the parse treeor abstract

syntax tree for the program. With a tree representationavailable,itshould be possibleto use the struc-

ture of the treesto dividecontiguous sectionswhich have changed and which would normally be shown as

one section,into several,more reasonable,sections.This problem can be dividedinto four parts. These

are limitingthe subtrees that must be compared, eliminatingsome subtrees of those subtrees from con-

sideration,finding the differences, and displaying the differences.
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Since it seems that tree comparison schemes general enough to use for changes in parse trees are

expensive, using one to compare entire trees is impractical. Given the nature of parse trees, a change in

the tree will always include a change in the leaves. Also, for parse trees, looking at just the leaves is mean-

ingful. Thus for parse trees it is possible to find the differences in the leaves, considered as strings of

tokens, and to use this information to find subtrees which contain changes.

The costs of the tree comparisons depend on the number of nodes in the trees or the heights of the

trees. The subtrees compared should be as small as possible, while being large enough to produce useful

information. What subtrees are compared can be based on the string difference between the terminals of

the tree. For each different section, the subtrees in the new and old trees that correspond to the change in

the terminals can be found. Since the idea is to present differences in logical sections, treating each

changed section of the terminal lists separately seems reasonable.

Several methods can be used to find subtrees for a changed section of the terminal lists. A simple

approach would be to find the smallest subtree which contains all the terminals that have changed, and to

do this in both the new and old trees. A problem wlth thls approach is that the subtree will not neces-

sarily contain all the changes in the tree structure caused by the change in the terminal list. For example,

with an LR(1) parser, the extent of the effect of the change to the tree to the left of the change in the ter-

minals is limited, but the effect to the right is not. To inform the user of all the ramifications of the

change, a subtree which contains all the changed terminals as well as all parts of the tree that changed

because of them should be included in the subtree.

One way to accomplish this would be to find the subtree based on an incremental parsing algorithm.

The incremental parsing algorithm can find a subtree that contains all the changes to the tree caused by a

change in the terminal list. For the Ghezzl and Mandrioll algorithm [Ghezzi and Mandrioli, 1980], the

subtrees in both the new and old trees can be found since the nontermlnal at which the algorithm stops

matches in the trees. This has the added advantage of finding two subtrees which have the same root to

compare. Thls is not essential, but is assumed by some tree comparison algorithms, for example Tai's.
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The subtrees found by an incremental parsing algorithm have another advantage. Changes which

are related but which are not contiguous will be grouped together into one subtree. Changing a while to a

repeat, for example, requires changes that can be widely separated, but the subtree containing all the

changes associated with changing while to repeat and deleting the condition will include the change to

insert until and a condition at the end of the loop. Grouping related changes would present differences

more reasonably. A problem arising from this is how to recognize unrelated changes that also appear in

the subtrees and how to deal with them. If the statement of a while that changed to a repeat also changed,

the changes to the statement would be included in the subtrees for the while, but would not be related.

Another problem arises if a subtree chosen for one change includes a previous change which has already

been grouped and matched. Some way to deal with this would have to be developed. The subtrees to

compare obtained from an incremental parsing algorithm have some very nice properties, but also have a

potential problem in finding useful information. The subtrees' roots may be a nonterminal that is mean-

ingless to the user. A question is whether this matters.

The grammar used i_y the LR parser will contain nonterminals which exist solely to make the

language easier to parse. A good example of this is nonterminals and production rules added to produce

an unambiguous grammar. The user will not care about seeing differences based on all the nontermlnals of

the grammar. Even if all the nonterminals represented unique entities, the user would not want to see

differences based on all of them. That would provide differences on too fine of a scale. Thus the informa-

tion shown to the user should be based on some subset of the nonterminals of the grammar in which the

user will be interested.

If having the roots of the subtrees be _interesting _ nonterminals is important, such subtrees could be

obtained in several ways. One possibility is to find the smallest subtree which contains all the changed sec-

tion of the terminals and whose root is an interesting nonterminal, and to do this in both the new and old

trees. This would no longer guarantee that all parts of the trees affected by the change in terminals were

included in the subtrees. However, since the purpose of the comparison is to display changes to the user in

a logical fashion, and not to record changes to the parse tree per se, this may not matter. The advantage

i
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of grouping related changes into one subtree would be obtained with this method as well. All the changes

to an entity in which the user is interested would be in the subtrees. As with finding the suhtrees based on

an incremental parsing algorithm, this method could find a subtree which would include a change before

this one which has already been grouped and matched or a change between two related changes.

One advantage selecting the subtrees based on an incremental parsing algorithm has over selecting

based on interesting nonterminals is that the roots of the subtrees will be the same. This is not essential

even for Tai's algorithm, since artificial matching roots can be added to the subtrees. However, it may be

desirable. If so, in both the new and old trees, the smallest subtree which contains the changed terminal

section and whose root is an interesting nonterminal which matches the root of the subtree from the other

tree could be chosen. This poses some problems. Let N N be the root of the smallest subtree containing all

the changed terminals in the new tree, and N o be defined similarly for the old tree. Let air be the number

of ancestors of N_ which are interesting nonterminals, and n o be defined likewise for N o. Then in the

worst case finding matching ancestors would take time of O(nlvno). Another problem is choosing between

multiple matches. If Nlv matches No, Mlv matches Mo, MN is an ancestor of NN, and M o is an ancestor of

No, the choice is clear. But if instead N_ is an ancestor of MA, the choice is not obvious. Some criteria for

choosing would have to be developed.

Another way to get roots for the new and old subtrees so that they are interesting nonterminals

would be to combine finding subtrees using an incremental parsing algorithm and finding nodes that are

interesting nonterminals. The incremental parsing algorithm could be used to find the new and old sub-

trees which contain all the changes to the parse tree caused by the changed section of the terminal list.

Then in both the new and old trees, the first ancestor of the root of this subtree which is an interesting

nonterminal could be found and taken as the root of the subtree for comparison. This combines most of

the advantages of the two methods.

One advantage not achieved by combining the methods is that of obtaining subtrees for comparison

which have the same root. As when subtrees were found based solely on interesting nonterminals, this

could be remedied by finding in both trees, the smallest subtree which contains the subtree found based on
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the incremental parsing algorithm and whose root is the same interesting nonterminal as that for the sub-

tree in the other tree: This of course has the same problems as before.

The discussion so far has mentioned potential advantages of various methods, but no disadvantages.

Aside from not possessing all the advantages of another method, the only area in which disadvantages

arise seems to be the size of the subtrees obtained. The purpose of restricting the subtrees for comparison

is to decrease amount of space and time required. Since some of these techniques for finding the subtrees

get larger subtrees, they do not accomplish the major goal as well as other techniques. Trying to get

interesting nonterminals that match or an interesting nonterminal whose subtree contains the subtree

based on an incremental parsing algorithm will necessarily find larger subtrees than some of the other

methods.

Many methods can be employed to limit the subtrees that must be compared. Which is best depends

on several factors. First, various methods can be employed in subsequent steps. One method for limiting

the subtrees might work best for one method of finding the differences, while another might work best for

another method of finding the differences. Another factor might be the particular grammar used for the

parse tree. If a situation in which one method performs better than another never or rarely arises with a

particular grammar, the one producing the smaller trees for comparison would be better. A third factor is

the set of nonterminals that make up the interesting nonterminals. Some requirements must be imposed

on the set. What these requirements are will affect the outcome of the limiting process. Further, given a

set of requirements, different sets satisfying the reqlJirem_mts may cause one method to perform better

than another. Finally the expectations of the user of the system will affect the choices. A user willing to

accept occasional odd results from a faster system will prefer a different method than a user who demands

perfection no matter what the cost. Comparing these methods to see which result in the smallest trees, the

fastest comparisons, the fewest odd results, and the most information will be interesting.

The next step in dividing differences into logical sections is to eliminate subtrees from the subtrees

found in the first step. For clarity, call the subtrees that are selected for comparison the trees, so that sub-

trees will refer to the subtrees of these trees that are to be eliminated from consideration in finding

!
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differences.

Several reasons for eliminating subtrees exist. One reason 18 similar to tile reason for limiting

subtrees--the time and space required to find the differences should be less since the trees to compare will

have fewer nodes. Another benefit of eliminating subtrees is better results from the tree comparison. If

some section of terminals is unchanged and the trees above them match, the sections should probably

match, so they should be reported in that way. Depending on the tree comparison algorithm and the tree

structure, these sections may or may not be reported as changed. A final advantage of eliminating sub-

trees is that it might make more of the tree comparison algorithms applicable. For example, Selkow's

algorithm could be used but it will report sections that have not changed as changed (this will be explained

when the third step, comparing the trees, ks examined). This would probably make the algorithm unusable

unless eliminating subtrees can match enough unchanged subtrees so that Selkow's algorithm reports few

spurious changes.

Several methods could be employed to eliminate subtrees. One could start from the leaves and go up

as long as the trees were the same. This would start from unchanged sections of the terminal list. These

could be in the trees to compare because of the grouping of related changes. An example of this is the

statement of the while if a while is changed to a repeat. Starting from the terminals, the trees above could

be compared until the trees are different. Parts of the unchanged sections on the left and right edges may

be dropped from the subtree as parts of the tree on the left and right do not match or include parts of the

changed section of the terminal lists. The subtrees obtained should be the largest subtrees in the trees that

contain only unchanged terminals as leaves and which are the same. These matching subtrees could be

found for each section of unchanged terminals included in the trees.

Another possibility is to find a series of trees that match rather than just one for each unchanged sec-

tion of terminals. This would presumably remove more of the tree from the part that must be compared,

which should make the comparison faster. The larger number of sections that are already matched with

which the tree comparison would have to deal might mitigate this. The subtrees that are matched might

be small. This would tend to make bookkeeping more expensive for little benefit. It would also tend to
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make reporting the differences to the user more complex. The user would see many small matches in a

difference, which could serve to obscure the real change.

As with limiting the trees to be compared, a question with eliminating subtrees is whether the root of

the subtree should be a nonterminal that is interesting to the user. The reporting of the change would

probably be more meaningful if the report mentions the unchanged sections. The subtrees matched would

be the largest subtrees which contain only unchanged terminals, which match, and whose roots are

interesting nonterminals, or a series of such subtrees. The matching subtrees would be smaller if an

interesting nonterminal must be the root. For a series of matched subtrees requiring the roots to be

interesting nonterminais might be better. Depending upon the set of interesting nonterminals, the size of

the subtrees which are matched would be reasonable. The worry about too much overhead for too little

benefit and a confusing display for the user could disappear.

Another possibility for eliminating matching subtrees is based on incremental parsing. Ghezzi and

Mandrioli's incremental LR{0) parser contains a section which will reuse parts of the tree to the right of

the change..The subtrees that are reused would contain, at least in part, trees that are the same. One

problem with the trees that are reused is that parts of the tree can contain changed terminals. This part

of the reused subtree could be avoided by taking the largest subtree that is reused but does not contain

any changed terminals. A series of such subtrees could also be found with this method.

One question with finding the trees for comparison which does not arise with subtrees for elimination

is whether the roots of the subtrees should match. Because the entire subtrees match, this does not hap-

pen.

An issue to examine for eliminating subtrees is how it is affected by the method used in the previous

step and how it affects subsequent steps. It should not be affected by what are selected as roots of the trees

to compare, that is, by what method is used to find the trees. Using similar methods in both steps might

produce better, more internally consistent results. For example, if the roots for the trees to compare are

selected to be interesting nonterminals, the roots of the subtrees to eliminate could be selected to be

interesting nonterminals.
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The method used to find the subtrees to eliminate will affect the subsequent steps. If subtrees are

eliminated, then the methods finding the differences must handle subtrees that have already been matched.

If a series of matched subtrees are eliminated, the comparisons must account for that. The comparison

method used must change depending upon what is done in the elimination step. Another affect of the ellm-

ination step could be to make the results of the tree comparison better.

Eliminating subtrees could also affect how the differences are displayed. If subtrees are eliminated,

either the text of the eliminated subtrees or a short representation of the matched subtrees can be

displayed. Also to be decided is whether subtrees that are eliminated from the comparison should be

treated differently from parts of the trees that the comparison says are the same.

Eliminating subtrees can be done in several ways. I want to try the methods for this in combination

with the methods for selecting trees for comparison to see which produce the best results. Another possi-

bility to compare is not eliminating subtrees at all. This will help show whether effort on that is really

useful.

The third step in dividing the differences into logical sections is the actual comparison of the trees.

Many possibilitiesexistfor thisstep. Now examine how threeof the existingalgorithms might perform in

grouping and separatingdifferencesifeliminationof subtrees isnot done, then at what implicationsthe

elimination of subtreeshas for these algorithms,what other possibilitiesfor comparing the parse trees

exist,and, finally,what forms oftreesmight be usefulfor the treecomparisons.

The resultsthe treecomparison algorithms produce should be able to group relateddifferencesand

separate unrelated differences.Another problem with which the algorithms would have to deal is a

changed sectionthat contains parts that need to be grouped and parts that need to be separated. This

might present more difficultiesfor the algorithms and should be consideredin evaluating which isbest. It

does not seem toadd enough to the simple analysishere to be considerednow.

One of the existingalgorithms is that developed by Selkow. This algorithm allows insertionsand

deletionsonly atleaves. For grouping changes to the same structure,thisalgorithm willwork well. Ifan

ifischanged to a while,for example, the algorithm willreport that the entiresubtree constitutingthe if
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must be deleted and the entire subtree for the while inserted. This is a result of the requirement that only

leaves may change. The tree will have a node that indicates an if. This will have to change to one that

indicates a while. For that node to change, it must become a leaf, so all its children must be deleted, the

node changed, then all the children of the new node inserted. If a few more internal nodes that are present

to make the grammar more amenable to parsing also change, they will also need to be inserted or deleted,

but the whole change from an i/to a while would still be one group of nodes to delete and one group to

insert. Thus the related changes would be grouped together. One problem with this is that the fact that

the condition and statement have not changed is not detected. The user would have to scan the text,

which could be a considerable amount, to determine whether anything had changed beside the i/to while.

Selkow's algorithm may or may not separate unrelated changes, depending upon the tree structure.

If the levels of nodes in changed structures do not change, then Selkow's algorithm will match those nodes.

Then the changes to the contiguous structures can come out as separate changes to the tree. However, if

the levels of nodes common to both the new and old trees change, the algorithm will say to delete and

insert everything. The separate changes would come out looking like one change.

The second tree comparison algorithm is Tai's. It allows insertions and deletions anywhere in the

tree. For grouping differences this would not work well. In the if to while example, Tai's algorithm would

report three changes: deleting i/and inserting while, deleting th_a and inserting do, and deleting and

inserting the nonterminals that indicate an if and a while. These would all be reported as separate

changes, so Tai's algorithm does not help to group related changes. [t would report the condition and

statement as unchanged, which is an advantage over Selkow's algorithm.

Tai's algorithm should perform better at separating differences. Since it can match nodes at any

level, it would not be affected in the way Selkow's algorithm is by changes that affect the level of

unchanged nodes. If two changes are contiguous but unrelated, the unchanged sections should match,

which will put changes to the separate structures into separate differences. If the changes are to some unit

which is meaningless to the user, more needs to be done to translate the changes into a change the user

would understand.
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The third tree comparison algorithm that could be used is Tichy's. This algorithm assumes that all

nodes with the same label have the same number of children. It then puts the trees into a linear represen-

tation, such as the preorder traversal, and uses a string comparison algorithm on the linear representation.

If this algorithm were appropriate for parse trees, its results would be similar to those from Tai's algo-

rithm. Nodes would match no matter what the level. Changes would not be grouped together. They

would be separated, but not necessarily into units that that user would understand.

A question is whether the assumption that all nodes with the same label have the same number of

children is appropriate for parse trees. The most useful labels for parse tree nodes are the terminals and

nonterminals that they represent. Nodes that represent the same nonterminal can have different numbers

of children because a nonterminal can be on the left hand side of many production rules, which could have

right hand sides of various lengths. A possible solution could be to use the rule number as the label of the

node rather than the nonterminal, if this information is available in addition to or instead of the nontermi-

nal. It is likely that the user would be interested in changes in nonterminals, not rule numbers. This

problem might be alleviated by using rule numbers for the initial comparison then doing further matching

on nontermlnals. Using rule numbers would not help at all if the parse trees were from a regular right

part grammar.

A solution similar to using rule numbers would be to make the unit of comparison a nonterminal and

number of children, rather than just the nonterminal or rule number. This would also need further com-

parisons. Unlike using rule numbers, it would be applicable to regular right part grammars.

Another possible solution is to include a special mark element after all rightmost children, then treat

these elements just like the string comparison elements that are terminals and nonterminals. This could

lead to some strange matches. As long as these happened rarely, the strange matches could be tolerable.

A possible way to avoid strange matches would be to restrict matches that cross mark elements and

not to treat the mark elements as normal string elements. The algorithm would have to change to handle

this. A problem could be that this requirement would be as restrictive as Selkow's algorithm or more so.

It could require nodes to be at the same level and be in the same numerical position in the llst of children
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to match.

If subtrees are eliminated, then the tree comparison algorithms would have to account for this. At

this point the concept of a trace is useful. For string comparisons, a trace matches the elements that are

unchanged. The trace would be a set of ordered pairs giving the positions in the strings that are matched.

For strings Saturday and Sunday, a trace would be

Saturday

I ////
Sunday

In a trace, none of the lines can cross, that is, if (i, j) and (m, n) are in the trace, then i _ m iff j _ n.

Thus

Saturday

would not be a trace. Traces for trees can also be defined. For trees, if the nodes are listed in preorder, no

lines would cross.

The tree comparison algorithms restrict themselves to differences that produce a trace. If this is to

be true when parts of the trees are matched before the comparison is done, then the tree comparison algo-

rithms must be changed. This might be just another dynamic programming problem. For Tichy's algo-

rithm, which uses a string comparison, this is no problem. If only one pair of subtrees is matched, the

strings would just be divided into two pairs of strings to compare. If more than one pair is matched, the

string is divided into more pairs that are compared without regard to other pairs. This is not as simple a

problem for the other two tree comparison algorithms.

Another possibility is to simply eliminate the matched subtrees and not worry about lines in the

trace that cross. This might help locate parts of the tree that moved, but only in a limited way. It would

also make reporting of the changes to the user more complicated. This solution for handling matched sub-

trees would be interesting to compare with other methods.

i



82

Matching subtrees could help the tree comparisons be more informative. It would help Selkow's

algorithm with grouping differences, as mentioned before. It might help Tai's and Tichy's algorithms as

well. By removing subtrees that might separate related changes, these changes may become one difference

to these algorithms. This is not necessarily true, however. Depending upon how trees are selected, say the

root must be an interesting nonterminal, or only one pair of subtrees is matched so unchanged parts out-

side this subtree are left to the tree comparison algorithm, unchanged parts of the tree could be left

separating the related changes. Then Tai's and Tichy's algorithms would still report the related changes

separately.

Eliminating subtrees might hinder separating unrelated differences in much the same way that it

would help group related differences. If all the matching nodes between two unrelated changes are elim-

inated, the changes could become one difference again.

Besides the tree comparison algorithms and modifications to those, several other methods for com-

paring trees are possible. These include developing a tree comparison algorithm for parse trees, rather

than trees in general, using .just the string comparison on the terminals in conjunction with the location of

interesting nonter,,_:_l:_, uslag a string comparison on strings of interesting nonterminals, and not doing

anything except possibly eliminating matching subtrees.

A tree comparison algorithm for parse trees might be better than algorithms that are for any tree.

Selkow's and Tichy's algorithms have some problems because their assumptions are not applicable to parse

trees. Tai's algorithm uses much time and space. An algorithm designed for changes to parse trees might

perform better. However, it might have the same problems as Tai's algorithm in grouping and separating

differences. Also, such an algorithm might be too dependent on the grammar to be useful in general.

Basing the differences on the string differences of the tokens and the tree structure, without any type

of tree comparison, might produce reasonable results. The tree comparison algorlthms do not seem to pro-

duce the results needed to group and separate differences. Once the tree comparison is done, further pro-

cessing is needed to produce something which will group and separate differences and be meaningful to the

user. A reasonable question is whether the added knowledge of what tree structure changed provides infor-
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matlon that would help with this and that the string difference of the tokens would not give. If it does

give some useful information, unless the resulting displays for the user are significantly better than those

produced from the string difference and tree structure alone, the tree comparisons may not be worth the

added expense.

Another possibility which uses more information from the tree than comparing the strings is to get

strings of interesting nonterminals based on the string difference of the terminals and use a string com-

parison algorithm on that. A possible method for getting a list of interesting nonterminals for a changed

section of terminals is to get the root of the smallest subtree that contains the first changed terminal and

whose root is an interesting nonterminal. Eliminate the terminals in that subtree and find the interesting

nonterminal for the reduced llst of terminals. Continue until no more changed terminals for this section

remain. Get the string of interesting nonterminals for both the new and old trees. Apply a string com-

parison algorithm on these. Basing the cost of changing one interesting nonterminal into another on the

terminals in the trees rooted a't the interesting nonterminals or the trees' structure may be worthwhile.

This is similar to the algorithm for finding differences between screen displays which Gosling presents {Gos-

ling, 1981].

One other possibility is to find the trees to compare, eliminate whatever subtrees should be elim-

inated, and call that the difference. This would work well for grouping differences, but not at all for

separating them. It would be interesting to compare this to other methods.

In addition to the method to use to compare the parse trees and generate the differences, a considera-

tion is what form of the trees to compare. Some possibilities are to treat lists of items in the grammar

differently from other tree structures, use only interesting nonterminals for the comparison, or use abstract

syntax trees.

Many languages have lists of elements, such as lists of statements or lists of declarations. They will

usually be represented in the grammar by rules like

item ::....

list-of-items ::---_e i item list-of-items

!



84

or

or

or

llst-of-ltems ::---- item ', item list-of-ltems

list-of-items ::-_- e _llist-of-items item

list-of-ltems ::---_ item I list-of-items item

depending upon whether the list can be empty and whether the production rule is left- or right-recursive.

The trees produced by these rules will be narrow and tall. If an item changes, the trees chosen as contain-

ing the change for the comparison will contain all the items before or after the one that was changed,

inserted, or deleted, depending upon whether the grammar is left- or right-recursive. This list could be

quite long. Depending upon how well subtree elimination worked, the trees to be compared could be quite

large. If several items in the list were changed, inserted, or deleted, the entire list or a large part of it

would need to be compared. The question is whether it is better to recognize that the elements that the

comparison must deal with is a list of items and then compare them as lists or to ignore the special nature

of the trees and compare them as trees. Using a comparison algorithm for strings would allow something

like the method Gosling suggests for comparing display screens, that is, using a comparison to find the cost

of converting an element of one list to an element of the other. Treating tree structures that represent

lists as lists rather than trees could produce a better comparison or produce a comparison more eflClciently.

Another possibility for comparing the parse trees is to involve only the interesting nonterminals in

the comparison. Since the user will want to see differences only in terms of the interesting nontermlnals,

comparing the tree in these terms seems reasonable. For the comparison, all the nodes in the trees except

the interesting nonterminals and the terminals could be ignored. This new form of the parse tree could

have all the terminals and interesting nonterminals treated as the children of the closest ancestor that is an

interesting nonterminal. Looking only at interesting nonterminals could have three advantages. Because

the uninteresting nonterminals are not involved in the comparison, the tree comparisons would be han-

dling fewer nodes and would be faster. Since only interesting nonterminals are considered, further
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processing after the comparison to get the differences into terms meaningful to the user should not be

necessary. Finally, the tree comparison algorithms might have fewer problems grouping and separating

differences.

A final form of the tree to consider using for the comparisons is abstract syntax trees. With abstract

syntax trees, presumably the set of interesting nonterminals would not be necessary. The tree should not

contain nonterminals that exist to simplify parsing. It could of course be possible that the user would still

not be interested in all the nonterminals used in the abstract syntax tree. A possible example is an item

that would be a small amount of text. If a subscript on an array reference changed, the user might prefer

having the array reference reported as changed, rather than just the subscript. A problem with abstract

syntax trees is that changes in the tree structure would not necessarily have a corresponding change in the

leaves of the tree. An example is that of changing an i.f to a while. Both would have children of expresslon

and statement. These would not change. It is of course possible to include parts of the syntax in the

leaves of the tree_ but it would seem that a true abstract syntax tree would not contain these. If it did

not, it would not be possible to locate the areas where the tree structure had changed by comparing the

leaves. The only way to find the differences in the trees would be to compare the trees in their entirety.

This would take quite a bit of time. Involving only the terminals and interesting nonterminals in the com-

parisons probably has the advantages of comparing abstract syntax trees without the disadvantages.

The fourth and final step in dividing the differences into logical units is to display the results to the

user. This has not received much thought yet. A few points have been mentioned in the discussion of the

other steps. Some of the issues to decide are how to display changes which are physically distant but logl-

cally related, how to display the unchanged sections between'related changes_ and whether to treat sections

that are matched in step two specially. No doubt more issues will arise as the other steps develop and

what type of information can be obtained from the comparison step is seen.

Dividing differences into logical sections can be done in many ways. Many combinations of methods

for various steps are possible. Finding how the methods behave and which produce good results will be

interesting.

I
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The second feature I want to develop is summarizing differences. The summaries would also be

b;tsed on the parse tree structure. Algorithms developed for dividing differences into logical sections might

serve as a good base for summarizing differences into logical sections. I want to investigate these possibili-

ties. If that proves fruitless, I will develop a method for summarizing differences independent from the

methods for dividing differences.

For both dividing and summarizing differences, a subset of the grammar's nonterminals must be

chosen. If all the nonterminais were used for dividing, differences would be divided too finely, which would

be more confusing than helpful. For summarizing, seeing summaries for each nontermlnal would be too

time consuming. It would also not be worthwhile for the person viewing the differences since the nontermi-

nais would include nonterminals whose purpose was to simplify parsing. To function well, the subsets will

probably have to satisfy certain conditions.

For dividing differences_ it might be that all that is necessary is a set of nonterminals which can gen-

erate all the terminals. The requirements for summarizing will be more complex. The summaries should

be on different levels. This probably means that each level will have its own set of nonterminals. These

sets will have to meet certain requirements, each set individually and in relation to the sets of the levels

above and below.

Some characteristics of these sets of nonterminals seem desirable. The nonterminals in any one level

should be able to generate all the terminals in the language. In this way, any change in the higher level

tree can be reported by reporting on changes in the lower level trees. Getting nonterminals that satisfy

this restriction will not always be possible. For example, some grammars have terminals which serve as

punctuation to separate lists as children of possible higher level nonterminals. These have no intermediate

level which could generate them. As another example, a nontermlnal needed for a set to generate the ter-

minals may contain nothing of interest or only terminals which rarely change. For example, one grammar

includes a nonterminal begin_symbol which goes to the token begin. Certainly, some difficulties can be

overcome by manipulating the grammar; however, this cannot fix all dif_culties and should not be a

requirement to use the difference system. Obtaining sets which individually can generate all the terminals
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will not always be possible, but sets which come close should be used.

Since finding sets which can all generate all the terminals is not always possible, some way to deal

with changes in the larger tree not in any of the interesting subtrees must be developed. If the difference

system has told the user that a statement was inserted, reporting the insertion of a semicolon is not very

informative. If the only change in a larger subtree is in part of the terminals not generated by the next

level, some change must be reported. Otherwise the user could be misled and also come to distrust a sys-

tem which reports a difference at one level but reports no difference when more detail is requested.

Some method for dealing with text which is not in the parse tree must be devised. An example of

such text is comments in programs. Many decisions must be made: how the system decides when a com-

ment is in a subtree {is it in a subtree only if terminals on both sides of it are in the subtree?), if the only

thing that changed in a subtree was a comment, whether the subtree should be reported as changed, and

whether a different message should be used to report that the tree did not change, but something attached

to it did. Whatever strategy is chosen, it should be general enough that the reporting makes sense for any

language whichmlght be edlted.with a syntax-directed editor and for which a parse tree can be built. The

strategy must also make sense for text besides comments which might be attached to a parse tree without

being part of it.

Another factor to consider in choosing nonterminals for dividing and summarizing differences is the

relationship of the set of nonterminais for dividing differences and the sets for summarizing differences to

each other. A relationship may not be necessary, but it might make more sense to the user if some rela-

tionship existed. In looking at conditions the sets should satisfy, I will also see what relationships might

profitably exist between them.

Another problem to be solved for summarizing differences is devising a scheme to store the many

methods for finding names in the trees. Some way to name the segment that has changed must exist so

that the user will have some idea in which part of the program the change is. This was explained in more

detail previously. I have not looked at this extensively, other than to identify some of the kinds of things

that would be reasonable names and which should fit into such a scheme.

I
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The third problem is to find a way to decide what level of differences to display in a summary when

the user does not specify a level. The problem seems to be to determine what relevant information is

available and how it can be used. Some information that might be useful is the tree structure, the number

of levels above and below a level, and the amount of text that a display at a certain level would generate.

Another question is whether the decision mechanism could be parameterized so that the user could have

some control.

These are the five problems that I want to solve: dividing differences, summarizing differences,

choosing nonterminals for dividing and summarizing, storing schemes to find names for summarized sec-

tions, and deciding what level of detail to display. I want to design methods that will solve these prob-

lems.
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Abstract:

The GNU Emacs editor has been incorporated into the SAGA Software

Development Environment as a uniform user interface. The

extensibility and interpr0cess communication features of GNU

Emacs are used to integrate several separate SAGA utilities

including an incremental parser, an incremental semantics processor,

and a configuration management system.
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1. Introduction.

The amount of time users spend in an editor is a large percentage of their on-line

time. While not discussing the issue of interactive vs. batch oriented development

methodolgies, this paper is concerned with maximizing the effectiveness of the human-

computer interface in a software development environment.

Our motivation was the need to integrate several different utilities with a common

user interface. A software development environment consists of a number of utilities

more or less tied together by some user interface. In the standard UNIX system, for

example, the user interface is commonly the shell. The different utilities are activated

by calling them explicitly from the shell, or implicitly from a script.

1.1. SAOA Software Development Environment: A software development

environment includes editors, compilers, linkers, loaders, debuggers. [n development are

verification systems and configuration management systems.

In the remainder of this paper, we describe the approach adopted to provide an

improved human interface to EPOS using the GNTJ Emacs editor. The editor provides

many typical features found in full-screen editors, is interfaced to raster display devices

as well as terminals, is programmable, and can be used with several different windowing

system packages including the MIT X-Windows system. Finally, the GN_tJ Emacs editor

provides a general interface which may be used with many other SAGA tools. Figure 1

illustrates the relationship between GNU Emacs and several SAGA tools. Figure 2

shows several features of the GNU Emacs environment which will be discussed in the fol-

lowing sections.

2. GNU Emacs

2.1. Standard Character-level Editing: GNU Emacs provides standard

character-level editing with a full screen, multi-window, tiled display [1]. All the typical

character manipulation commands are available as well as cursor movement, screen pag-

ing, global search and replace, etc. - things that a programmer would expect in an edi-

tor. Character-level editing is what programmers are used to, but the reason for using

GNU Emacs stems from its extensibility more than its familiarity.

Like other editors in the Emacs family, GNU Emacs allows the user to extend the

initial command set by using a LISP-like language to write functions which may then be

bound to key sequences. GNU Emacs LISP is a fairly complete LISP extended to

include primatives for editing in a multi-buffer, multi-window context.

2.2. Language Specific Modes

Each buffer may have several modes associated with it which correspond to buffer-

specific commands, variables, etc., appropriate for editing the text in the buffer. Several

language modes are typically provided in the Emacs library of LISP programs. A

language mode may be automatically associated with a buffer based on the name of the

file being edited.

I



2.3. Holophrastlng, Tags, etc. Several language-independent functions useful to

program development are provided with GNU Emacs. A global holophrasting feature

allows the user to select the indent level beyond which text is not displayed for a specific

buffer. A general Tags facility allows the user to maintain a database of tags which are

associations between names and references to locations within several text files.

2.4. Command Completion Templates: User defineable macros and abbreviations

are supported by GNU Emacs. A general completion function allows the user to build

customized tools for completion of initial character sequences. We have used this capa-

bility to provide a language specific template system. The user enters the initial charac-

ters of a symbol followed by a completion command (key press). If the initial characters

match one of the symbols in the completion list, they are replaced by the full symbol

name or by an associated template.

2.5. Help Facilities: GNU Emacs provides extensive on-line documentation of all the

editing commands. A user defined command may make use of the same documentation

facility by including a documentation string in the command definition. Nevertheless,

considering the large number of commands available to the user, it is sometimes difficult

to quickly find the appropriate command. We have written a hierarchical menu inter-

face to most of the Emacs commands in the style of Lotus 1 2 3. That is, a prefix com-

mand opens up a single line help menu; several lines of menu items are possible in the

case of large menus. The first letter of each menu item is a key command which opens

up a lower-level menu, etc., down to a real command. When a real command is found,

the documentation string for the command is available; the associated key sequence for

the command, if any, may be reported; or the command may be executed immediatly.

2.6. Incremental Parser The first subprocess which has been installed under the

GNU Emacs front end is an incremental parser. The SAGA research group had previ-

ously created an incremental parser with its own screen-oriented editor called EPOS.

The user interface for EPOS is difficult to use and the large program was difficult to

maintain. We decided that the extensible" GNU Emacs editor could be a powerful front

end for the incremental parser as well as for other SAGA projects.

With GNU Emacs as the front end, the user is allowed to modify any text in the

character representation of a program. As changes are made, the corresponding termi-

nal tokens in the parse tree representation of the program must be updated and the

tokens reparsed. The reparsing algorithm, described in [2], minimizes the extent of the

reparse by maintaining the parsing stack state at the time each token is parsed. In the

worst case, the whole text stream must be reparsed, but usually only a small neighbor-

hood around the change requires a reparse.

A modification of GNU Emacs (as distinct from a LISP extension) was required to

support the incremental parser. The modification made use of the Emacs Undo capabil-

ity which allows the user to undo previous changes as far back as it can remember. As

changes are made to the text buffer, they are passed to a LISP function with

identification Of the kind of change. The LISP function collects contiguous changes until
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a non-contiguous change is made. At that point, it sends the contiguous change to the

incremental parser. A reparse is performed automatically with every new contiguous

change or an explicit reparse may be requested by the user.

An example of one contiguous change is given in Figure 3. A contiguous change

consists of a deletion and an insertion at the same point. As each new change is made, it

is either incorporated into the contiguous change if it overlaps or abuts the current con-

tiguous change; otherwise the change is the beginning of a new contiguous change.

Three kinds of changes are possible: insertion, deletion, and replacement. Both the

beginning and end points of a change may each fall in one of three regions relative to

the contiguous change: before, within, and after.

3. Adapting the Parser to the New Interface

To use the EPOS incremental parser with GNU Emacs as a front end, a new

simplified command language was developed that allows a front end to give commands

such as move the cursor, delete text, or insert text. Theoretically, this command

language could be used by a human, and in fact it was so used for testing purposes, but

for any significant program this would be impractical. However, this modularity means

that the parser could be used with another front end editor without modification.

To be useful with a real text editor, the parser must be able to handle any text a

user may enter. The original EPOS editor only allowed spaces before tokens, and conse-

quently trailing blanks on a text line where not permitted. In addition, tabs could not

be used at all. As the parser was adapted to the GNU Emacs front end, this unaccept-

able limitation was removed by changing the internal representation of the tokens in the

parse tree. Another limitation of the old EPOS was the restriction of comments to a sin-

gle line only. Now, each line of a multi-line comment is a separate token.

In the process of extracting the parser and making modifications to it, a number of

previously unknown bugs were discovered and fixed. The changes made were made with

the intention of supporting language independence. The only language specific parts of

the parser which remain are in the lexical analyzer.

3.1. Multiple Syntax Errors: One of the advantages of the SAGA incremental

parser is that any number of syntax errors may be present in the parse tree con-

currently. This is accomplished by maintaining the erroneous, unparsable tokens under

a "marked" non-terminal. This marked text will be reparsed if it is affected by a future

change.

Often while editing a program, the programmer will find it most efficient to leave

the text in a syntactically erroneous state. An example is illustrated in Figure 4. To

enclose several statements in a Repeat loop, the initial "repeat" must be inserted leaving

a syntax error later in the program usually at the point where an "until" is expected.

8.2. Text vs. Template Editing: An alternative to text editing with an incremental

parser is template editing. A template editor may restrict the kinds of modifications of a

program text to syntactically correct transformations, or it may reparse the whole text,

I



or reparse at the expression level for convenience. For the above example, the task of

enclosing several statements in a Repeat loop involves first cutting all the statements,

second inserting the "repeat ... until" template, and finally pasting the statements into

the Repeat loop.

A text editor with an incremental parser provides the most flexibility by allowing

arbitrary text modifications while supporting templates if desired. We have implimented

a simple template system keyed on an initial substring of the template text. The user

enters the first few unique letters of a template followed by a "completion" key. If the

letters match a template, it is expanded in place of the letters. If the letters do not

match a template, an error message is given, but if the letters match more than one tem-

plate, a help list of the possible matches may be displayed for the user in a separate win-

dow.

3.3. Parse Tree Commands: Since a parse tree representation of a user's program

is being maintained, the user may wish to make use of it for more than error checking.

Typical commands which must interact with the parse tree include token and subtree

selection, forward and reverse motion by token or subtree, and subtree transformations.

Such user-level commands are "translated" by a LISP program into messages to the

parser. The parser responds with messages which may indicate the appropriate relative

character motion, region selection or a replacement string.

We have developed a package of transformation routines to speed the conversion of

while loops to repeat loops, case statements to nested if statements, etc. Logical con-

sistency is maintained across the transformations by negating and reducing logical condi-

tions or duplicating statements, as required. The transformation routines run as an

additional subprocess and are given access to the parse tree. The output of the transfor-

mation routine may be simply displayed in an alternate window or may be inserted as a

replacement string.

4. Incremental Semantics Processor

An important component of the SAGA environment is semantics processing. An

incremental semantics evaluator is being developed which will run as another subprocess

under the GNU Emacs front end. Changes to the parse tree and commands which

interact with semantic information will be communicated to the semantics evaluator

which maintains its own semantic-level representation of the program. The semantics

evaluator may also return commands or text to the editor.

As an example, the transformation of a while loop to a repeat loop described earlier

is more appropriately handled by a semantics-level routine. Specification of the type of

transformation and the subtree to be transformed is first sent to the semantics routine;

the transformation is applied; the new text representation is returned to the editor to

replace the original text; and the replacement action is sent to the incremental parser ['or

reparsing.

The semantics component of the SAGA environment will play in important role as

an attribute evaluator. In addition to incremental compilation, an attribute evaluation
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system may be used for program verification, incremental refinement, and project

management. But for all of these, a unified user interface is required as well, and the
_- ;1,-,1ex_ens,v,e GNU Emacs is suitable.

5. Conclusion

We have explored the practicality of using an extensible text editor as the front end

for a number of aids for program development. GNU Emacs has proven to be worthy of

this task in providing the generality of a powerful text editor and the flexibility required

for communication with independently running subprocesses.

6. References 1. Stallman, Richard, "GNU Emacs Manual," Third Edition,

Emacs Version 17, December 1985. 2. Kirslis, Peter, "The SAGA Editor: A

Language-Oriented Editor Based on Incremental LR(1) Parser," Doctoral Thesis,

December 1985, University of Illinois, Urbana-Champaign.
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Clemma: An Automated Configuration Librarian

Hal S. Render

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

Control of system configurations has long been a problem. The SAGA project is investigating

several such problems in the area of software development. Clemma, a prototype system for managing
configurations on several levels, is presented with a discussion of the details of the system's guiding princi-

ples.

1. Introduction

A growing problem in the development and maintenance of software projects is the organization,

manipulation and storage of the large number of components involved. A single medium-sized software

system, with 10 to 50 thousand lines of code, may be composed of several dozen separate computer files.

Requirement specifications, design documents, project plans, user manuals, source code, test data--all may

be stored on-line and all must be maintained throughout the lifetime of a project. This requires the abil-

ity to track, identify and control all changes made to a system's files. As the size and complexity of sys-

tems grows, the difficulty of performing these operations also grows.

Another, more recent, problem is the distribution of a system's component files. Modern software

development theory promotes modularity, the grouping of system components into logically-related clus-

ters [reff]. This technique has several recognized benefits, both to the software and to the engineers

involved in its production. Unfortunately, the separation of the components of a system increases the

difficulty of treating a large system as a single entity, or even as a limited number of modules. In addi-

tion, most means of grouping software system components into modules are still relatively unsophisticated,

and seem to have little support in many development environments. What is needed is a way of being able

1



to referto andmanipulatethecomponents of a system on several different levels, from that of a single file

to that of a module to that of a system. Current efforts at solving this problem are widespread_ though

few have gained any widespread use in _the real world" [12].

Traditionally, the task of keeping records on all material produced during a software project and

taking responsibility for change control is the duty of a project librarian [reff.]. This entity (sometimes a

single person) is responsible for tracking all of the components developed, identifying the state of each, and

ensuring that a particular component is releasable for use by other project members or users. This func-

tion is crucial to a project, as it is often the principal interface between management and staff for gauging

and controlling the progress of a project.

With the push to automate various functions of the software development life-cycle, a means of

tracking the state of a large system automatically was inevitable, and several efforts are notable. Early

efforts resulted in systems called project support libraries, which essentially automated some of the work of

a human project librarian. More recently, the entire area of identifying, tracking, and controlling changes

to systems has been classed as software configuration management. The effort to apply CM techniques to

software development has resulted in SCM, and with varying degrees of success. The principal problems

arise in the youth of software engineering as field of endeavour. Not enough is known yet about construct-

ing software systems in a reliable fashion to easily enable one to automate its management. For this rea-

son, SCM is still an area open to experimentation.

Since the SAGA project (Software Automation, Generation, and Administration) is concerned with

automating the prduction of software systems, it was inevitable that we should investigate the issue of

configuration management for such systems. Our efforts to date demonstrate the need for an automated

means of handling the components of large, hierarchical software systems, on several levels of abstraction.

A prototype configratioa librarian, Clemma, is our attempt to provide a means of investigating the prob-

lem of configuration management in large software systems.

2
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2. Background

Before Clemma is discussed in more detail, a few of the terms relevant to a discussion of software

configuration management should be defined. A configuration, for our purposes, is a "snapshot" of the

components of a system, describing their states and their interrelationships at a specific point in time.

Each of the individual elements of a configuration is called a configuration item (CI). The effort to deal

with the problems of controlling the development and evolution of configurations is called configuration

management (CM). Specifically, Bersoff defines this as the discipline of identifying the configuration of a

system at discrete points in time for the purpose of systematically controlling changes to the configuration

and maintaining the integrity and traceability of the configuration throughout the system life cycle

[Bersoff, 84]. Software configuration management is the application of CM techniques to projects com-

posed principally of software.

3. Clemma

Clemma is a prototype of a configuration control system. The system is modeled on a project library

concept, and as such most of the operations of the system are analogous to conventional library operations.

But the requirements of a project librarian are different from those of a conventional librarian, so in some

places there are operations which are wholly new to the idea of a library.

An important aspect of Clemma which should be mentioned is the fundamental configuration item in

the system: a file. Many of the efforts currently underway to provide configuration control for software

systems currently use such logical entities as subprograms and shared data structures as the basic con-

trolled items. In analysing the problems we wished to address, we found that the isolation and recognition

of logical entities within files vastly complicated the management issue, particularly in an environment

which will be multilingual and which, hopefully, will be used to model different development methodolo-

gies. Current systems for dealing with independently produced project components seem to impose strict

constraints on the developer, so that any item produced conforms to format standards which allows the

system to identify the configuration items. Such systems thus pay a price in flexibility for this sophistica-

tion.



However,filesarerelativelyeasyto handle.Theyareeasilyrecognizable,havediscernableattri-

butes,andcanbemanipulatedeasilyin mostoperatingsystems.Rather than limit the applicability of

Clemma to software developed to rigid structural guidelines, we have opted to place some of the burden on

the user by allowing hlm/her to program as s/he wants. This does require the user to inform Clemma of

some of the logical attributes of a configuration item manually, as they would be difficult to determine

automatically. The task of performing this manual characterization of items is being investigated, so it is

possible in the future that an even finer granularity of items will be possible. For now, having the file as

the basic element of a configuration is sufficient.

3.1. System Architecture

As mentioned, Clemma is a configuration librarian. Configuration items are stored in libraries, and

nearly all of the available operations are analogous to those of a conventional library. A Clemma library

has four main parts: a repository, containing copies of all of the configuration items in the library; a cata-

log, which is a database holding all of the information on the items in the repository; a temporary storage

pool for the read-only copies of checked-out items, call the user area; and a table of the current users of

the library items, called the usage list. The purpose of each of these structures will be detailed as the

operations provided by Clemma are described below.

8.2. Operations

As a configuration librarian, Clemma has several functions.

• Create a configuration library. This operation causes all of the library data structures to be created

and initialized. The creator of the library also establishes directors for the library--individuals who

have total control over the creation and deletion of library elements and all other library capabili-

ties. A delete operation exists to undo all of the actions of create.

• Catalog a configuration item. This creates an entry for an item in the catalog. Information about

the item is collected and stored in the database, and an empty version chain is initialized for the item

in the repository. In addition, manager permissions are established for this item by the individual
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who catalogs it. If a user has manager permission for an item, s/he then has total control over that

item. (Directors subsume all of the powers of a manager.) The uncatalog operation peforms the

inverse of the catalog operation.

Install a version of a configuration item. A copy of a cataloged item is attached to the version chain

for that item in the library repository. Additional information about the particular version being

installed is collected and stored in the catalog. Note that only an item manager or someone who has

been granted permission by a manager may install a version of an item. Managers may create a list

of allowable users to restrict access to an item. Remove is the operation which removes installed

versions from a library.

Checkout a version of a CI for read-only use. This gives the user performing the operation access

to a read-only copy of a library item. The copy resides in the user area, and is shared by all indivi-

duals who have checked the item out for read-only use. If the access to the item is restricted, then a

manager of the item must give an individual permission to checkout the item. When an item is

checked out of the library, an entry is made in the usage list recording this fact.

Checkout a version of a CI for modificat|on. This gives the user a wrltable copy of the CI. Per-

mission to check an item out for modification must be granted by a director or one of the item's

managers. An entry is made in the usage list when the item is checked out.

Return a version of a CI. This operation is used for returning a checked-out copy of an item to the

library. The user's access to the item or local copy is removed and the user's name is deleted from

the usage list for that item. This does not, however, put any revised items in the repository--the

install operation must be used for that purpose.

Collect individual configuration items into a single item. This operation is used for the creation of

collections, which are formatted lists of configuration items. These require some explanation. When

a software system is created, it is often broken up into modules for reasons well known to

structured-programming enthusiasts. In a configuration, one often wants to treat not only the indi-

vidual files in the configuration as CIs, but also the modules into which the system is divided. To do

5



this in Clemma,all of theusefulfilesof a modulearefirstcatalogedandinstalledasCls. Whenthe

filesarecataloged,theyareeachassigneda call number, which uniquely identifies a particular CI to

the library. The collect command takes the list of Cls comprising a module, and creates a specially

formatted list of their call numbers and stores this in a file. This file can then be cataloged and

installed as its own (albeit special) CI. The type of a CI (file or collection) is stored as an attribute of

the CI in the catalog.

Assign attribute values to a configuration item. This operation is used to store attribute values for

CIs in the catalog.

Compare the differences between versions of a configuration item. This prints out a listing of the

changes made from one version to another of a specified CI.

Identify items from the library. For a given item, it is often necessary to provide a histpry of the

item and its development. The identify operation prints a formatted listing of all the information

pertinent to a configuration item or a particular version of a configuration item. This information

allows reasoned decisions to be made about the item.

Retrieve items from the library using attribute-matching. The retrieve operation yields the call

numbers of all the CIs in the library who have attribute values matching those given to the opera-

tion. This allows indexing of items, and is a great aid to promoting re-use of software components.

All of the operations implemented thus far in Clemma have been chosen for their accordance with

the library model and for their applicability to the problems involved in software configuration manage-

ment. But, perhaps their prime value is as a means of investigating the types of operations which would

naturally be required by someone trying to perform configuration control on a developing software system.

4. Implementation Issues

The current implementation of Clemma is based on the capabilities provided by the Unix _ operat-

ing system, and some of the terminology used is specific to that system.
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The implementation of the four principle data stuctures comprising the library is fairly straightfor-

ward. A library is given a home directory when it is created, and subdirectories are set up for the reposi-

tory, the user area, the catalog and the usage list. This helps to provide some encapsulation for the under-

lying implementation of each. The repository will hold copies of all the CIs in the library, which could

possibly number in the thousands. For this reason, we are investigating various means of file organization,

compression, and archival so that an et_icient means of dealing with such a large number of files may be

ascertained. Robustness is also a strong concern, as any system such as this must ensure its users that

their components, when installed in a library, are as secure or even more secure than they would be when

left in the users own directories. Various protection schemes are under scrutiny which may provide this

security.

The catalog of a library is probably the next most important data structure. It is used to provide

the central storage and indexing facility for all of the attributes of the library items. As this function is

primarily that of a database, the Troll/USE DBMS is being used in the current implementation of

Clemma. Troll provides a powerful, flexible, robust interface to the catalog, and seems to be a tool which

will have a great deal of applicability in the future of Clemma and other SAGA tools.

The usage list is primarily an indexing tool, and so may also be implemented in Troll. Because of a

somewhat simpler nature, however, other types of structure are being looked at as a method of implemen-

tation. If the inherent slowness of a DBMS can be avoided while still providing the necessary function and

robustness, then it is obvious that such efforts are necessary.

The last structure of a library, the user area, is simplest. This is a directory of read-only copies of

checked-out items. The user gets a link to one of the copies when s/he does a check-out on that item, and

the link is removed when the item is returned. Since all of the copies are owned by the director of the

library, there is no chance for accidental deletion of the item by the user. This scheme provides a simple

means of controlling the sharing of such items by several users.



b. Conclusion

Clemmais an attemptto providea simple,flexiblemeansof constructingand maintaining

configurationsof small-to medium-sizedsoftwaresystems.Thebasicpremiseis the treatmentof the

componentsof asystemasattributedobjects,andtheuseof a librarymodelfor thestorage,indexing,and

sharingof theseobjectsin aconfigurationof asystem.TheUnix"_file.systemUsedastheimplementation

medium,andtheTroll/USEDBMSisusedto providefor thestorageandindexingof theattributesof the

storeditems.WebelievethatClemmaisa usefultoolandonethat will providemanyimportant!nsights

into theproblems involved in software development.
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A Preliminary Proposal for a Software Engineering Management Tool

Robert N. Sum, Jr.

University of Illinois at Urbana-Champaign

Department of Computer Science

Urbana, IL 61801

1. Preface

This paper is a statement of ideas that are currently being investigated. We believe that many of

them will be useful in a software management tool. We would appreciate comments, criticisms, and refer-
ences to similar work.

2. Introduction

We wish to automate much of the management and tracking of the products involved in the lifetime

of a software system. To do this we need a model of the tasks involved and a means to implement the

model. We present a consumer producer model that is based on a production cycle that occurs in what we

view to be similar situations in the "real world," e.g. the construction industry [Spector and Gifford, 86].

For the implementation, only speculation about characteristics of the tool is now ofered. We will close

with how this management tool relates to some of the ideas in the literature and the SAGA project.

8. Model

We base our model on a management by objectives approach where a producer satisfies the need of a

consumer. A consumer has a need for a product, either goods or services, which he must request from

someone other than himself. Therefore, he procures a producer to provide the product.

This model (see Figure t) is a simplification of what we perceive to be the process in the "real

world." Often a product requirements are given to many producers who submit proposals for a product

that satisfies the consumers requirements. The consumer then chooses the producer with the best proposal

and works with him to create a specification for the product. The producer then creates a product to meet

this specification. In some sense, the specification is implemented under timing constraints and other

acceptance criteria. ASter the consumer has received and accepted the product, the production cycle ends.

We call this production cycle a ta_k. Finally, we note that if a producer is not able to satisfy the

specification sometime during the course of the production, then the consumer and the producer may agree

to some revision of the specification so that it may be satisfied.

In this model, a specification specifies the consumer, producer, resources supplied by the consumer,

product(s) to be delivered by the producer (including progress reports), start and end dates, delivery dates,

and acceptance criteria for product(s). The specification does not specify how the producer will fulfill the

specification. A specification may request such a large product that the producer in turn becomes the con-

sumer several (sub)products. These (sub)products should be invisible to the original consumer.

4. Characteristics

In this section we describe some of the characteristics of the proposed management system.
include some basics about the tasks used in the system and the requirements made of the system.

We
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Consumer Producer

Product Requirements

{create/revise specifications

authorize task

Product Proposal

modify/accept specifications} ÷

begin implementation

{sometimes some problems
resulting in specification revision}

Product is accepted

Product is delivered

Figure 1. Consumer Producer Model.
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4.1. Tasks

The task is the basic entity in the system. It will be a highly structured document in two parts. The

first part is the specification. The second part is the implementation. Both parts will be machine inter-

pretable. This will be accomplished with programming language techniques, although the tasks and their

relationships form a database. For example, we expect the specification and implementation parts to have

a relationship similar to the definition and implementation modules in Modula-2, while keeping track of

the state of tasks and the relationships between them is best done using database methods.

The task definition will be visible to both consumer and producer. It contains consumer

identification, producer identification, start date, end date, delivery dates, resources supplied by the consu-

mer, products to be delivered, and their acceptance criteria.

The task implementation is the part of the task that is private to the producer. It includes the

definitions of (sub)tasks and possibly other actions that the producer must perform. It is expected that

these (sub)tasks and actions may be related in a manner similar to the events in PERT charts. Simple
PERT charts are not sufficient, however, because we need to be able to "execute" them. In particular, we

may wish to use looping constructs that "trigger" on resources or inputs supplied by the consumer. For

example, in a change control board we would like all user change requests to follow the same procedure

during a maintenance task.

4.2. System Requlrements

We want the management system to accept task specifications, execute task implementations,

"notify" consumers of producer failures for certain criteria, and automatically generate certain types of

reports (given some description by the consumer within the task specification). However, we currently

assume that managers will use separate tools for such things as cost estimation and that data from these

tools would be entered into tasks by hand during their development. (A project history may be main-

tained by the system so that these tools and future projects could draw on the experience of present and

past projects.)
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We expect the management system to be able to run if only task specifications are available. In

other words, a consumer and a producer may authorize a task before the producer completes or even starts

the task's implementation. The implementation must, however, be completed before the system needs to

execute it, i.e. before the start date of the task.

The early stages of requirements may be done as informal development of the task specification by

the consumer and the (prospective} producer(s). Authorization of the task would be at the time that it is

submitted to the management system (e.g. compiled and loaded).

If we are to allow for task revision as noted in our model, then we need a very flexible system, to say

the least. This may be handled in part by a version control mechanism. We hope to avoid full-fledged

object oriented systems llke Smalltalk because of their complexity and difficulty with efficient implementa-

tion. We do notice that a blend of programming language techniques (e.g. task contents) and database

techniques (e.g. report generation) will be required.

Finally, we would like to have a friendly user interface. It may be possible to do task specifications

with form fillers or structured document editors (e.g. [Kimura, 86]). For the implementations, we would

prefer a graphical interface as it would make the PERT qualities more apparent. We note, however, that

our goal is to build a management system, not a slick user interface.

5. Conclusion

We have presented a consumer producer model to be the basisfor a software management system.

We now mention some relationshipsof the software management system (tool)to the literatureand the

SAGA project.

5.1. Literature Relatlonshlps

The STARS Project [Martin, 83] definedvarious task areas in software engineering that it would

work on. One of theseisthe projectmanagement task area ILubbes, 83]. In [Lubbes, 83],Lubbes presents

a table of functionalcapabilitiesfor software management. Figure 2 shows those capabilitiesthat we

believethisproposed system willsupport in some part.

We also believetha_tthe consumer producer model can support various management structures.In

[Duly,79], Duly compares and contraststhe three main management structures:project,functional,and

matrix. Even though we have not yet worked detailedexamples, we believethat the consumer producer

model issufficientlyflexibleto capture the dependencies in each structure,including those in which one

person isresponsibleto more than one manager.

Some similarideasappear in the BRICS system [Howes, 84] which was done manually initially.An

automated versionwas (is)under development. Among these ideasisthe abilityto model work breakdown
structures.Tasks and sub-tasks should be ableto model work breakdown structuresnicely.

We are stillsearching the literaturefor information about such management systems. We also

expect that there are some corporatesystems without publicationexposure.

5.2. SAGA Relatlonships

The management system will be integrated with other SAGA tools. The most important of these

tools are the configuration management and electronic communications (see Figure 2). Resource

specifications for access to system documents, libraries, and workspaces may be specified in tasks. During

execution, tasks will call upon the configuration management to supply resources. Communication of

tasks and and notification of status changes may be done using mail, notesfiles, or trays.

In [Campbell and Terwilliger, 86], there is an example using a change control board in the SAGA

ENCOMPASS environment. Figures 3 and 4 show some kinds of forms which task specifications could be

based on. We have used some BNF-like notation in the figures to indicate the use of standard forms for

tasks, i.e. the system may be able to support different "types" of tasks. At this time, we are still investi-

gating semantics for the relationships of the data in a task. These semantics will depend on the database

aspects of the management system.
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Capability

Database Management

Support

queries and reports

possibly to other tools

about tasks,

Telecommunications notification via mail, notesfiles [Es-

sick, 84], and/or trays [Campbell

and TerwUliger, 86]

Interactive Work Planning creation/revision of tasks

Schedule Generation tasks, especially details inside im-

plementations

Mgt. Information Reporting automatic reporting in task

specification, automatic notification
of task failures

Configuration Management interface to configuration manager
for resource allocation and work

spaces

Figure 2. Management Tool Capabilities.

I
I

I
I

I
I

I

4

I
I

I

I
I
I
I
I

I



I

l

I
I

I
I
I

I

I
I
I
I

I

I
I

User Change Request < request_id >

Originator: < person >
At: < address >

Phone: < phone >

{Net: < net_address> }

Receiver: < person >
At: < address >

Phone: <phone>

{Net: < net_address > }

Received: < date >

Accepted: < date >
Closed: < date >

Product: <id>

Product Number: < product_number >
Version: < version_id >

Related Products: {
Product: <id>

Product Number: < product_number >
Version: < version_id >

}

Request Type: <Errorr_Modificationr, Enhancement>
Severity: <severity_level>

Current Behavior: < text >

Requested Behavior: < text >

Resolutions

[Temporary:
< date >

I I I
< Restriction_Workaround, Patch_Simulation >

< text > ]

Permanent:

< date >

< Updatet_ Release >
< text >

Figure 3. User Change Request.
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Program Modification Request < request_id >

Requested by: <person> Analyst: <person>
At: < address > At: < address >

Phone: < phone > Phone: < phone >

{Net: <net_address>} {Net: <net_address>}

Received: < date >

Accepted: < date >

Completed: < date>

Associated UCR: < polnter_to_user_change_.request >

Resources: ( < access_to_other_servlces > }

Findings: < text >

Recommendation: < Accept_Reject >

Associated PMP: < pointer_to_program_.modification_plans >

Figure 4. Program Modification Request.
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A Summary of the Software Development Cycle

of AT&T in Middletown, NJ

Robert N. Sum, Jr.

Department of Computer Science

University of Illinois at Urbana-Champaign

1304 W. Springfield Ave.
Urbana, IL 61801

1. Introductlon

This paper isa summary of the softwaredevelopment organizationand practicesused in the System

75 and relatedprojectsat AT&T InformationSystems in Middletown, NJ. It isthe resultof a one week

observation by Robert Sum (the author) of the Universityof Illinoisat Urbana-Champaign, Urbana, [L.

The purpose of the week's observationwas togather information about currentsoftware engineeringprac-

ticesfor input to researchprojectsin softwareengineeringat the University.

The next sectionof thispaper presentsan overview of the AT&T lifecycle and the AT&T mange-

ment structure. Subsequent sectionsdiscussvarious processesin the lifecyclefrom the viewpoints of the

people and meetings the author attended. Often the content of thesediscussionswillbe derived primarily

from a meeting with one particularperson. During these discussions,some specificsabout toolswillbe

presented,includingthings that work, thingsthat do not work, and suggestionsfor things people would

llketo have. The paper closeswith a summary, acknowledgements, and references.

2. AT&T Organlsatlon

In this section, the life cycle and personnel structure that AT&T uses in software development are

described. It should he noted that the author observed several projects at different stages of development.

Even though all were based on the same philosophy and common ancestry, there were some differences.

This paper is a synthesis of these projects' development. Hopefully, it reflects their philosophy in its most

recent form without evolutionary differences causing problems.

2.1. Life Cycle

The AT&T software life cycle is essentially a classical "waterfall" model. Figure 1 outlines this life

cycle showing the processes (ellipses) involved and their products (boxes). The processes used are: product
definition, requirements definition, architecture definition, feature definition, high level design, code and

test, integration and quality development, system test, and qualification. Most products are documents

until the last half of the life cycle where code is produced. The documents and code produced include:

technical prospectus, requirements, architecture, feature specifications, external design, development

specifications, development code, system code, field code, and released code. The major divergence from

the classical "waterfall" model in the AT&T model is separate independent development of the system's

Draft October 6, 1986 1
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Figure 1. AT&T Life Cycle
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development
specifications

development code

system code

field code ]

V

releasedcode

external
design

Figure 1. AT&T Life Cycle (cont'd)
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architecture and the system's features. This separation is also visible in the documents produced during

development where one side (left) is concerned with the external behavior of the system and the other is

internal construction. (In relating Figure 2 to Figure 1, the process specifications and process

Draft October 6, 1986 8



decomposition specifications are parts of the development specifications. Also, dashed boxes refer to code

while solid boxes are documents.)

One should note that Figure 1 describes the primary development cycle and that several other

smaller cycles run in parallel and interact with it. These other smaller cycles include system test develop-

ment and project management. System test uses a development cycle that is very similar to the primary

development cycle. It includes system test plans and various design and implementation steps. The
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system
requirements
i

technical

prospectus

architecture j

process

specifications

I feature

specifications

external Idesign

I system testplans

system test
I I

process |
ecompositior_
pecifications 1
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', code ii
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Figure 2. Document Hierarchy

I
I

I
I
I

I
I

I

I
I
I
I

Draft October 8, 1988



I
I

I
I
I

I

I

I
I

project management cycle is based on sampling of the primary development cycle to monitor its progress

and ensure its integrity.

2.2. Personnel Structure

The management of the development process is done with many specialized groups. These include

system engineering, project management, project coordination, software design, software tools, develop-

meat, integration, quality development, system test, and field support. While most groups have input to

several of the processes in the life cycle, many of the groups control a particular process. For example, the

product definition process is controlled by systems engineering in that they produce the technical pros-

pectus, but product management and software design provide an equal if not greater amount of input to

the technical prospectus. Also, the technical prospectus is reviewed by system test, field support, and other

groups to alleviate any dlttlcultles that they may find early in the project's life time. Figure 3 lists most of

the relationships between development groups and development processes.

AT&T's personnel structure is a project oriented structure with some leanings toward a matrix
structure to gain some of the management advantages. For instance, the developers are all devoted to a

particular project, but a member of a project coordination group may have several projects to coordinate.
It is also possible for one person to do more than one job such as project management and heading a

development team. It is often the case that tasks such a project management are distributed in a func-

tional manner. This has become even more prevalent with the newest project that is being developed con-

currently at sites separated geographically and computationally. The basic structure of the personnel and

project that the author observed is depicted in Figure 4.

I
Development Groups and Processes

I
I

I
I

I
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Development

Group

Systems Engineering

Project Management

Architecture

Development

Processes

Controls Reviews

Product Definition Feature Specifications

Requirements Definition

Integration&

Quality Development

System Test

Field Support

Tools

(Whole Project!)

Architecture Definition

High Level Design

Feature Definition

Code & Test

Integration

Quality Development

System Test

Qualification

Technical Prospectus

Technical Prospectus

Requirements

Technical Prospectus

Requirements

Development Specifications

Technical Prospectus

Development Specifications

Technical Prospectus

External Design

Technical Prospectus

Contact

Person

none)

L. Beaumont

V. Sherman

M. Johnson

S. McKechnie

P. Gerhardt

P. Matteo

R. Wrigley

S. Siverstein

C. Allison

G. Yates

T. Pederson

I Figure 3. Development Groups
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Figure 4. Personnel Structure

3. Systems Englneerlng

Systems Engineering is the liaison between development and marketing. Initially, SE receives from

marketing the perceived needs of the customer. Then, SE receives from development information about

technical capabilities that customer may want. It is possible for development to propose a project and

then have SE check with marketing to see if it is marketable, but this is not common primarily because of

its high failure rate in producing marketable products. Often, SE acts as a mediator between marketing's

perception of the customers' needs and Development's desire to create a system with all of the latest and

greatest technology. After doing its own analysis, SE decides whether to start initiate the development of

a new product.

To initiate a new product, SE begins the product definition process of the main development cycle

(noted previously in Figure 1). SE brings together the Project Management, Architecture, and Develop-
ment people with the goal of producing the Technical Prospectus. It is in production of the TP that SE

often finds its most trying times as a mediator. The Technical Prospectus describes the purpose of the
product, its environment, and its features. This document is informal and has a varying level of detail

about the items it describes. It may contain only one half page per feature and still be 200 pages long.

After the TP has been completed, SE works together with Architecture and Development during the

Requirements Definition process to produce a formal Requirements document that clearly states the

features to be provided by the product and the resources required to develop and maintain the product.

The last major interaction that SE has with a project is the review of the feature specifications which

are done by the Development group. At this time SE makes sure that the features described earlier in the
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Requirements are specified correctly so that upon implementation the product will meet the customer
needs.

Final Note: This information about SE is derived from various meetings and conversations as the

author did not have the opportunity to meet with someone from Systems Engineering.

4. Project Management and Coordlnatlon

In this section the author includes both Project Management and Project Coordination because of

their close relationship in managing and monitoring a project. Project Mangement concerns the overall

organization of the project concentrating on the resources (people, machines, etc.) needed to develop and

maintain a project. Project Coordination concerns the organization of the project in time by tracking

deliverables and their delivery dates to ensure that the project stays on schedule. Finally, we spend some

time discussing the main meetings used to monitor product development.

4.1. Project Management

In general, text book (formal) management methods exist but they have problems when being

applied to actual developments. Many of these problems arise from the fact that most projects have a his-

tory, i.e. very few projects actually start totally from scratch. History related problems include uncertain-

ties in re-used code, incremental feature development, retrofitting new features into old products, and

merging technologies. Other problems result from the inexactness with which certain resources (most not-
ably people) can be measured and predicted. Resource problems include variations in personnel experience,

personnel productivity, and personal preferences which can require a lot of political effort to solve.

Project Management is most visible during the early processes of the development cycle. It has
direct input during Product Definition and prepares the Project Plan in association with the Architecture

and Requirements. The Project Plan includes schedules of varying detail (including staffing), a brief pro-

duct description {at most one paragraph per feature), resource descriptions (including re-used software,

hardware, computer support), development method outlines, and a list of open (unresolved) issues. After
this early activity, PM is always present in the background dealing with unresolved issues ensuring the

project's progress toward completion in a timely and efficient manner.

4.2. Project Coordination

Most of the monitoring of the project's progress is done by the Project Coordination group. Gen-

erally, each project has one project coordinator. This project coordinator is charged with the task of

ensuring that deliverables promised by one group to another will be delivered by the time that they are

needed. The coordinator schedules all project milestones and acts as a negotiator for all the development

groups. She oversees or writes project plans, tracks all milestones and deliverables, and aids project
audits.

Project Coordination starts during Product Definition and continues actively throughout the

project's life time. The primary mechanism for deciding project coordination issues are planning and

status meetings. Planning meetings plan the future and status meetings make sure the present agrees with

the plan. These meetings are often held at different levels of detail for different managerial positions.

Meetings for developers and supervisors (first level managers) are down to the individual deliverable that is

being produced whereas meetings for department heads and directors look at larger time scales llke project
phases.

To create the project's schedules, the project coordinator often starts with a marketing date and

then must make development fit a schedule designed to be done by that date. Although there are some

automated tools to support some aspects of project coordination and tracking, many (most) of the work is

still done by hand. (More details about tools will follow later.) Some of the basic problems are:

1. People do not reliably inform project coordinators of a task's completion or delays,

2. People try to prevent lateness by moving dates without dependency information,

3. Current tools do not communicate with each other,

Draft October 6, 1986



4. Tools do not provide a way to selectively view time slices,

5. It is awkward to talk about partial completeness of tasks,

6. The project coordinator must have basic knowledge of all development processes and groups on a

global scale.

AT&T has tried individual coordinators for parts of projects or for types of tasks, but has had more suc-

cess with the global coordinator.

4.3. Meet|ngs

There are three basic meetings used for management, scheduling, and tracking of project develop-

ment. They are planning, status, and integration meetings.

4.3.1. Planning

The planning meetings decide the project's goals, deliverables, schedules, and task assignments.

These meetings are held either weekly or bi-weekly.

The agenda of planning meetings work on the high level view of the project and how the project

should be organized. A planning meeting for a project just beginning (almost planning plans) may include:

1. software development planning,

2. hardware development planning,

3. integration planning,

4. software responsibilities,
5. summary of meeting, and

6. open discussion of things for the next meeting.

Most of the items above are discussed with concern what are reasonable milestones and deliverables for

each milestone. During the open discussion, special tasks and problems are brought up so that they may

be investigated before the next meeting and discussed then if necessary. A list of important tasks and

problems is kept. An example of special tasks might be: how to define certain deliverables or how to define

terms like "quality" with respect to some system performance.

4.3.2. Status

The status meetings review the current state of a project and compare it the completed tasks with

those that should be completed according to the project's schedule. One should note that planning meet-

ings do not run just one or two weeks ahead of status meetings, but that they run substantially ahead of

status meetings (several months).

The agenda of status meetings changes depending upon the age of a project. In the case of a new

project, some of the following may be discussed:

1. problems with coordination of development start up at multiple sites,

2. additions and deletions to parts of the project (this has repercussions in planning meetings),

3. problems with tools, equipment, and other resources needed for development,

4. contents and completion of documentation plan for the project,

5. changes to items being worked on since the last meeting,

6. discussion on how to track software development progress, and

7. methods including verification methods to be implemented.

On the other hand, a somewhat older project with several releases in the field may discuss:

1. what fixes have been put into various releases,

2. importance of new bugs and how soon they need to be fixed,
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3. problems with fixes that have not yet been completed,
4. dates for system testing of new versions.

Also in older projects, the status meeting handles most of the short term scheduling and planning work.

4.3.3. Integratlon

Integration meetings concern the building of new releases (versions, revisions) of a product and the
problems encountered in the process. Some of these might be code changes that conflict some other code

or the discovery of an inadequacy in an integration tool. Problems are resolved to ensure the integrity of

the product.

A typical integration meeting might include the following on its agenda:

1. tool problems,

2. laboratory hardware (new and old),

3. modification requests (MRs) i.e. bug fixes and product enhancements,

4. development workspaces,

5. special items such as introducing new tools, and

6. integration procedures.

Another meeting closely related to the integration meeting is the MR review meeting. The MR

review meeting reviews all pending MRs on the project and whether their status should be changed. A list

of the most critical bugs is maintained so that fixing them receives the most attention. The MR review

meeting is composed of specialists from each part of the project to expertise in all areas in deciding the

nature of the MRs. Several members are from the Quality Development group as well. It is after an MR

has been fixed that it appears in the integration meeting.

5. Architecture

The systems Architecture is developed from the Technical Prospectus and the Requirements by the

Architecture group. The Architecture is a very high level design document that specifies how the system

will be implemented to support the features in the Technical Prospectus and the Requirements. In Archi-

tecture, as in other processes, history and experience are the major tools. This section briefly describes the

Architecture Definition process and the creation of a work breakdown structure.

5.1. Architecture Deflnltlon

This descriptionof ArchitectureDefinitionisbased on the ArchitectureDefinitionused for a family

AT&T switching systems. Almost every system has a predecessorwhich provides an immediate basisfor

the new system's architecture.In the event that the new system is"just" a new releaseor an extensionof

an existingsystem, then the new system may re-use both hardware and software. Even when a totally

new system isdesigned,itoften replacesanother system which has some relatedfunctionality.

For the firstswitch in thisfamily,therewere other relatedsystems that experiencewas drawn from

to createthe Technical Prospectus. Three areasvisiblein the firstswitch'sTechnical Prospectus that can

be seen in allof the switches are:

1. interactive development - the telephone user and the functionality that he sees,
2. system administration - the customer's person in charge of programming and maintenance,

3. system maintenance - installation, use without user intervention, reliability, audits, and self-

diagnostics.

Consideration of the support required by each of these areas lead to a layered architecture with a kernel

operating system (see Figure 5). Each layer in the product provides primitives for the layer above. Inter-

faces between each area were defined in terms of the primitives that each layer in the architecture
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provided. With each new system in the family, adding new features is done by looking in the existing
architecture and finding where the appropriate primitives are provided or where they should be added.

General opinion at AT&T is that this architecture was quite well designed as it has supported a successful

family of switches without becoming unbearably complex. The same architecture has been used for

different hardware (including microprocessors with different hardware architectures).

5.2. Work Breakdown Structures

Work breakdown structures are derived from the Technical Prospectus and the Requirements. In

general, large areas are mapped onto company structures such as departments or groups (for example, sys-

tem test). Individual features are eventually mapped to individual developers.

Initially, Systems Engineering sends the Requirements to various supervisors that will be involved in

the project. SE meets with the supervisors to determine answers to:

1. How many people are needed and are there enough people?

2. Is the project technically feasible?

To determine the answers, the supervisors rely primarily on personal experience. They do a quick-

and-dirty high level design (not generally committed to paper)"to determine a basis for staffing. This

quick-and-dirty method has steps like:

1. Choose a large section of the project

2. categorize its features
3. fit features with the Architecture and people.

In fitting the people to the features, supervisors use a ranking of employees by ability. Sometimes a super-

visor maintains a concrete list, but more often this is a mental list. This way supervisors try to allocate
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the most difficult jobs to the best people. After this rough design and people fitting, the whether the pro-

ject is technically feasible and whether there is enough people should be answered.

Next, Project Management and Project Coordination determine dependencies and track progress

using planning and status meetings. Estimates of work and milestones are developed in a forum where

people make collective decisions on work estimates. PM and PC notify supervisors of late items and com-

ing events. If a milestone is missed, then either functionality is dropped or the delivery date is slipped.

This decision is usually made by Project Management or Systems Engineering.

5.3. Some Psychology

There is a lot of psychology and politics involved in determining system architectures and work

breakdown structures. For instance, if development wants to build a project, then they tend to underesti-

mate the cost of the project. On the other hand, if they are not interested in building it, then they overes-

timate the cost. Planning is the mechanism by which Systems Engineering and development reach a

compromise. If one lets either side win over the other then the project usually results in failure. If

development is interested but SE has no market, then there is a wasted effort. On the other hand, if SE

has a market and development is uninterested, then development does a poor job because they do not care

about what they are working on. Understanding peoples wants and needs is the biggest problem of project

development.

One example of this is in the Architecture of the switches mentioned earlier. The Architecture is

based on primitives and layers. But, it could have also been done vertically by feature. Why was one

chosen over the other? One hopes that technical decisions such as how well the architecture supports

current and proposed extensions prevail. Often, however, some approach has a strong "political" spok-

esperson that convincingly argues his approach. And, there is the ever present history mechanism. Look-

ing back over several generations of switches, it is seen that "new" architectures appear only about every
15 years.

6. Development

Development's two major products are the Feature Specifications and the Development Code. The

Feature Specifications are the exact specification of how each feature will act including error conditions.

The Development Code is the code expected to be released that must pass the various stages of integration

and testing. This section 15oks at the developer's position in the life cycle in terms of both new develop-

ment and old development (fixing bugs).

6.1. New

The developer is basically at the bottom of the development structure looking up to see the entire

project. In the beginning of a project, it has been beneficial to have other groups such as System Test

review the various specification and design documents. Near the end of the development, it has been

beneficial to have an "in house" system to use as a test. (This system is not in a testing lab, but rather

the phone system used in day to day work.) Often, however, the developer can not get a big picture of the

system he is working on. In other words, it can be very difficult to understand interactions and dependen-

cies between his part of the project and the rest of the project. A system that allows the developer to see

these dependencies would be very welcome.

The environment that the developer works in is currently a collection of tools built on top of other

tools to force them to work together. For instance, the developer uses a combination of tools from the

Local Administrative Tool Kit (LATK) and the Object Generation System (OGS) to create workspaces in

which to work. OGS is in turn built on top of MESA which is built on top of SCCS. While most of these

things work pretty well, there are some failings especially in maintaining dependencies between modules

that cause problems with building the system. In addition, there is very little connection between develop-

ment code, the Modification Request (M.R) system, and the Project Document (PD) system. This lack of

connection results in much time spent tracking down the correct person to talk to when a problem occurs.

Or, in the case of a bug report (MR), there is no automatic suggestion to other releases that this bug may
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also be present. This last problem is most important when multiple versions of a system are being main-

tained, possibly during beta-testing or controlled introduction.

Other problems that occur while a developer is coding a new system include:

1. Large amounts of code make it difficult to find definitions and other things,

2. Debugging a large (real time) system can be very difficult,
3. Edit-build-test-debug cycle can take a very long time - especially when using multiple machines,

4. communication - finding the right people and information quickly and easily.

Some (partial) solutions to these problems include:

1. vi with tags - a version of vi that uses tags generated by the compiler and other utilities that

allows vi to be used as a browser. A few key strokes finds the definition of a define, variable, or

function and puts it in a separate window.

2. A. complicated debugging simulator that runs on the development machines rather than the target

machines makes debugging much easier.

There are also some tools that index the error messages so that one can find where and error mes-

sage was generated. But these are not fully developed.

3. One reason for the length of the edit-build-test-debug cycle is building with cross-compiling and

down loading. Reliable high speed communications can alleviate some of the tedium and frustra-
tion.

4. For communication, enhancements to mail and a bulletin board system have worked well. An

electronic calendar system to help schedule appointments would be helpful. Also possibly, a voice

storage phone system (i.e. a centralized phone answering machine) would be helpful.

6.2. Old

Old refers to maintaining the development of many releases simultaneously including bug fixes. One

of the biggest problems here is that of a bug fix being needed in releases both older and newer than the

most current one. Currently, Modification Requests are for one person on one release. If he realizes that

the problem may be more wide spread, then he may be able to search out the person responsible in a simi-

lar area on the other release(s) and notify him. Often this is not possible. The rest of this section details

this problem and some solution ideas.

In general, bugs are handled in using the _ mechanism in the following manner:

1. an _ is received from customer, developer, or whoever,

2. it is assigned to someone to investigate (and plan a fix),
3. it is fixed,

4. the fix is sent to integration for inclusion in the next system build,

5. System Test then verifies by testing that the problem is fixed.

This process depends on some tools in LATK linking MR, MESA and other tools together. At A.T&T the

Integration group overseas and reloves the integration problems with bugs and keeps track of what bugs
are fixed in which versions and releases. This seems to work and a few tasks such as some of the MR

status changes are done by the LATK tools. But, each Integrator is concerned only with a specific release

and does not necessarily know about the others. A. lot of time is spent taking care of these bug reports and

even more is consumed by migrating them to other versions and releases.

The process of migrating a bug fix is called a "bugout." The major problem areas with bugouts are:

1. different releases may have different structure,

2. how much testing is necessary to ensure fix,

3. which changes be broadcast to other releases or versions.
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Figure 6 shows a couple releases each with a few versions. It also includes examples of bugout paths and

feature porting which can often happen as well.

The problem of different releases having different structure refers to some software architecture

changes. These changes are small in that they may not affect the system architecture, but'source code diffs

will become unusable because the context of the diffs is preserved across releases (or versions). Figure 7
shows how a single process may be broken into smaller ones or even recombined into one again in later

versions. In some straight forward cases diffs are used resulting in a saving of human labor, but most

often some data structure or internal function has changed forcing the re-lnvention of the fix.

When testing a fix, there is the question of how much testing is necessary. This question arises a

second time when a fix is ported. If the fix was tested and verified in another release, then it probably does

not need as much testing when it is migrated, or does it? In practice, it is possible to eliminate some test-

ing, but interactions of the fix must be carefully examined first.

Another facet of different releases having different structure is the difference in features between two

releases. In this case a table (e.g. Figure 8) of features and releases may be helpful in suggesting what
releases need to have a bugout, especially when the bugout is localized to a specific feature. Perhaps a field

could also be added to the MR to indicate what features and what versions a particular bug would apply
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Figure 7. Architectural Changes
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Features and Versions

Feature rlvl rlv2 rlv3 r2v0 r2vl

H/M n n y y y

ACD n n y y y

SW y y y y y

ADM y y y y y

Figure 8. Bugout Table
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to. Then, MRs could be sent automatically to the appropriate Integrators. How much information the

system can send and track is difficult to determine. Fixes and enhancements can require a lot of code and

other work, even if it is expressible just as diffs to documents and code.

Currently, AT&T people individually generate diffs for versions that are very closely related. For

releases that are not closely related, they rely on the fixer finding out who to contact on the other release(s)
and forwarding the information about the fix to the other release(s).

7. Tools

The Tools group interacts with most other development groups to provide support for them. Most

of the Tools group's work is spent in automating various parts of the development including control of

source code, keeping and tracking bug reports, and control of project documents. The Tools group makes

very few decisions concerning products, but does figure very heavily in the resources necessary to create the

product. Most of the work of the tools group is early in a product's life time, but tools do evolve to better

meet the needs of developers during the product life time. This section is included in the paper here

because most of the software tools developed to date interact with Development and Integration. Some

categories of tools are those for source code control, modification requests, project documents, and project
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7.1. Source Code Control

The primary source code control mechanism is the Object Generation System (OGS). OGS provides

the ability to generate multiple versions of a software product from a single source hierarchy. It adds

functionality on top of MESA (Management Environment for Software Administration) which is a facility

for maintaining hierarchical structures of SCCS (Source Code Control System) files.

OGS uses a hierarchical directory structure in the UNIX file system for project management. The

top level is the project (P J) level. Successively lower levels are the system, process, and book level. Each
project has a base project area for source code and each revision of the project can have its own base

object area. This allows many revisions to be kept simultaneously while all share the same source code

area. OCS utilities manage the various object code generation details by using MESA to get the appropri-

ate source code and "make" to create the system object code. The MESA system maintains a hierarchy of

source code files and their dependencies so that make files can be automatically constructed. The handling

of dependencies is done in part by inspecting files and also by giving the utilities knowledge about file

types by using special file suffixes. (Actual construction of the make files is done by OGS.) SCCS main-

tains multiple revisions of individual files using a forward delta storage scheme.

A developer typically follows these steps when using OGS:

1. setup - create a workspace of parallel source directories,

2. sget - get the individual source files to be changed including locks to prevent multiple concurrent
changes,

3. editthe sourceand possiblybuild localcopy to testchanges,

4. usubmit - submit the workspace to the Integratorfor integration.This laststep requestsand MR

number ifthere isone, informs the Integratorthat thisworkspace has been submitted, "hides" the

workspace by changing the ownership and permissions of itscontents,and createsa specialshell

scriptthat can be used to unify itwith the restof the system.

The commands above are actually Local Administrative Tool Kit (LATK) coatings of the raw OGS com-

mands. This was done in order to help link the OGS system in with other systems such as the MR system

for Modification Requests. It also alleviates the individual developer from needing to know the details of

more than one code management system.

AT&T has several variations on its source code management. This is partly because each project

tends to modify the "standard" tools to fit their needs. For example, the MESA system has capabilities

not yet supported by OGS. These include Independent MESA and CASSI. Independent MESA is a simple
mechanism by which development may proceed on multiple machines simultaneously. It also includes hav-

ing more than one user working on the same source file. However, in the latter case the system stores the

multiple copies and requires human intervention to produce a single copy that is a merge of the multiple

copies. CASSI is an attempt to link the MR system (described below) and the source code systems more

closely. Some parts of AT&T other than Middletown have been experimenting with it, but there have

been some problems with it that have prevented its widespread use.

7.2. Modiflcatlon Requests

The Modification Request system is essentially a large database system for tracking and storage of

bug reports and enhancement requests. It is used throughout AT&T as the Change Management Tracking

System (CMTS). The PCS/MR system at Middletown is an enhancement primarily for user friendliness

including automatic notification via electronic mall of certain status changes that occur to MRs.

MRs include the expected data about origin, products, severity, and current status. The status of an
MR can be:

a) ui - under investigation, i.e. brand new,
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b)pa- pendingapproval,i.e.a fix hasbeenfoundbut notapprovedby theMRreviewboard,
c)b[ - beingfixed,i.e.someoneisactuallytrying tofix it,
d)dup- duplicateof anotherMR,
e)de[- deterred,i.e.not importantenoughto beconsideredat this time,
f) nc- nochange,i.e.notaproblemor not to beimplementedaftersomeconsideration,
g)e- complete,i.e.fixedor added.

Of the status possibilities above, complete, no change, deferred, and duplicate are considered to be
resolved. Deferred MRs can be "unresolved" at a later time should it be decided that they should be

implemented.

An MR may also acquire "child" MRs. These are used to note various resolutions and to note that

other items (e.g. documents) may need to be updated as a result of this MR. In the latter, child MRs have

the same effect as parent MRs and require their own status and resolution changes.

7.3. Project Documents

The Project Document (PD) system is a library of project documents. It maintains control over a

project documentation in a manner similar to using SCCS. A project document is given a mnemonic
identifier that includes its producer, its type, and its sequence number. As a document is revised the sys-

tem assigns release numbers to it so that people know whether they have the lastest version or not. Docu-

ments may also have different status codes depending on their state of completion. These status codes

include draft, preliminary, changed, final, and obsolete. The PD system allows all of a project's docu-
ments to be baselined and have MRs written against them. It also makes it easier to distribute project

documents to project members. In fact, a project notebook including project documents describing project

procedures for documents, MRs, reviews, coding standards, and other things is given to every project

member.

7.4. Management Tools

AT&T has a few management tools, but they are help with only a small part of the management
tasks. These tools include the Milestone Schedule and Tracking System (MSTS) and a program called

Timeline that runs on an AT&T pc. A hand done procedure (tool) called Priority Feedback System (PFS)

is sometimes used by managers to help with work assignments and monitoring.

Currently, MSTS allows schedules to be kept on-line on the development computers. Milestones

consist of the contractor, the producer, the consumer, original due date, current due date, and previous

due date. MSTS does not have a visual representation other than tables and it does not have a good

mechanism for setting up and maintaining dependencies. Also, MSTS is used across entire projects and
does not have a mechanism to view subset of interrelated milestones. It is very much just a database or

record keeping system. MSTS is used by the Project Coordinator and can hold milestones for the entire

project.

Timellne runs on personal computers and has dependencies, and some critical path and cost analysis

capabilities. It still has some trouble handling everything for a large project, but has proven useful for

individual managers to keep track of their groups.

For milestones, one would like a system with the PERT/CPM abilities of Timeline, the scope of

MSTS, selective viewing of dependencies, and automatic notifications of approaching milestones to the peo-

ple producing deliverables and to the Project Coordinator. L. Beaumont has started some experimenting
with a relational database to see if most of these capabilities can be developed using various entities to

represent documents, milestones, dependencies, and people.

To help manage people and work assignments, some managers use the Priority Feedback System.
This is not an automated tool, but it could be automated, at least in part. It consists of a form in which a

worker and his manager order the worker's tasks by priority. The worker and his manager then meet

every so often to review the tasks and set personal milestones for the worker. This allows the worker's

progress to be tracked in a more quantifiable way. It also keeps the manager more informed about the
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individual's work load and to whom new tasks might be assigned. This tool is sometimes helps with work
breakdown structures.

8. Integration & Quality Development

Integration is the process of forming one system from many developers' code. Quality development

includes testing the integrated system in a "white box" manner to maintain system stability. AT&T has
found it advantageous to have split these two tasks.

8.1. Integrat|on

The Integrator is an individual assigned to a project to do the system Integration. His responsibili-

ties include collection of workspaces, resolution of integration conflicts, maintenance of each integration's

MR list, creation of the new system, and integration testing of the new system.

The Integrator begins by collecting workspaces which have been submitted by the developers. Col-

lecting workspaces includes checking to see that all the developers have submitted their work to the system

and nagging those that have not. After all the workspaces have been acquired, the Integrator can add the
source to the system.

When updating the system source, the Integrator must resolve any conflicts. For instance, it is possi-

ble that more than one MR required one source file to change in separate places. If the changes are not

obviously independent, then the Integrator must have the developers agree on some merging procedure.

Another possibility is special cases that the integration tools can not handle automatically, thereby requir-

ing the [ntegrator's intervention. He must also make sure that the status of the MRs are updated and that

the list of MRs included in a particular system is updated.

After the system source is updated, the new system is made. Most of the time, this runs without any

trouble. Occasionally, however, some source code dependencies may be missed and the Integrator will

have to fix them by hand. In order to minimize this, a complete rebuilding from scratch of a system is

done from time to time (possibly once per week).

After the object code has been produced, the Integrator downloads it into the target machines and

runs some simple tests. The download program is also reasonably clever in that it will only download

newly built code. The tests that the Integrator runs are fairly straight forward. They just check the

current system starts up and appears to run correctly.

The Integrator uses tools from OGS and LATK. In the process described above, the Integrator must

set up several environment variables that describe the software base, the target hardware, and the system

type (e.g. development or field). The are some tools to help with setting these parameters and examining

what OGS will do with them. The Integrator uses the command "review" to help keep track of the MRs

in each revision of the system. "Runinstall" uses as input the developers output from "usubmit" to install

the workspaces using ,MESA. Finally, new object code is produced using "runbld" which uses dependency

information to rebuild those parts of the system that need it.

Overall, the system works. Most dependencies are handled correctly. There is only one collection of

source code with separate object code areas for each revision. Also, the tools have used electronic mail

very effectively as a means of communicating error conditions to the Integrator. However, the Integrator
has some problems:

1. The system only knows about predefined set of file suffixes so not all files are handled automati-

cally,

2. Tools are so loosely coupled that there is too much room for mistakes in parameters and order of
execution,

3. Aside from closing the dependency holes in 1, one would also like dependencies to be more exact-

ing (i.e. there are still some times when the system recompiles more than it needs to).
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8.2. Quality Development

[t was recognized that there were some problems that fell through the cracks between development

and system test concerning the quality and stability of the system. Quality Development is designed to seal

those cracks at the point between integration and system test.

8.2.1. Motivation

The major motivation for QD is that customers get extremely upset by bugs appearing where they

originally did not exist. The appearance of bugs in places where they previously did not exist make the
system look like it is deteriorating rather than improving. The desire to have the system always improve

results in some friction between marketing and development. The marketing view being that if the custo-

mer does not see a bug, then the system is not broken and should not be fixed.

To achieve stability, it needs to be built into the development process. This is not easy to do because

of the following problems:

1. it is difficult to determine and control the stability of a system,

2. it is unknown how to prove when a system is stable because stability is not well defined,

3. stability is very closely tied to reliability but the relationship is not clear,

4. designing stability in make the front of development process slower with a hoped for speed up at

the end (e.g. later practical demonstrations disturbs management),
5. The tradeoff between make things work and maintaining the status quo is not always clear.

Some of these problems are touched upon in the next section, but QD is very new and therefore not as

clearly described or defined.

8.2.2. Implementation

QD tests the system in a "white box" manner. It purposefully attacks weaknesses in the system to

improve the robustness (quality) of the system. QD stresses internal interfaces and support features that

are not directly accessible to the customer. This means that QD uses the Development Specifications

rather than the External Design that System Test uses. In some cases this is similar to the "classiscal

view" of integration testing.

QD is very prominent in the MR review process mediating concerns and disputes about system sta-

bility. MRs are reviewed by people from many areas to best determine their importance and impact, but

QD has the final say on which MRs are included in a system.

Although it occasionally appears that QD has its fingers in everything from development through

delivery, its primary function is to maintain system stability. System stability is ensuring that a system

does not change too rapidly and that it does not have news buss appearing where there were no buss pre-

viously. (In other words, QD makes sure that the fixes do not break other things.) In order to ensure sta-

bility, one often builds and maintains separate releases for individual or small groups of customers. This

can put a large amount of stress on the configuration management system, the MR system, and the

Integrator.

During a product's lifetime, the emphasis on stability changes. In the beginning, almost any fix is

accepted because the functionality of the system is still being completed. In the middle, only bug fixes that

are believed or can be proven not to break anything else are accepted. Finally, near the product's end,

only those fixes guaranteed not to break anything else are accepted. Unfortunately, much of this guaran-

tee is still based on the intuition of Development and QD. Occasionally, System Test will find problems.

9. System Test

System Test is the group that acts as the user's advocate to ensure that the system the developers

produce meets it specification. System Test tests the system in a "black box" manner to keep the user's

view. System Test involves both hardware and software.
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System Test begins with the development of the project's Technical Prospectus and External Design

by reviewing them for completeness and testability. System Test tries to keep Development honest by

simulating the user so that these documents are not ambiguous. Once the TP is finished, System Test

begins its development process with the creation of the System Test Plan (STP). The STP includes

detailed tests of each feature under normal and exceptional conditions over a variety of system

configurations. The STP also includes a description of the tools, peripherals, and simulations to be used to

test the system.

Some stress between System Test and Development results from a couple inherent problems. One

problem is that System Test provides negative feedback (error reports) to Development that is not always

appreciated. In order to reduce the stress that occurs, System Test interacts with Development to make

sure that they are doing things correctly. One such interaction is Development's review of the System Test

Plan to ensure its accuracy and completeness. Another problem occurs if Development slips its schedule.

In this case, System Test is often put under pressure to finish in less than the scheduled amount of time so

that the product's delivery date does not slip.

Often as System Test develops its tests, a pre-release is received from Development that allows ST to

test their testing tools and generally see how the system works. This is especially important in the set up
of new hardware. It should also be noted that System Test is a large project and has a lot of things to

manage. Therefore, System Test has everything under some form of version control including both
hardware and software. This enables System Test to more effectively determine the location of the bug by

component and release. Sometimes System Test also gets advice from Field Support people (customer

engineers) to improve its model of the system's expected users.

Ideally, when it is time for the new system to under go system test, System Test receives a final
release of the software. In practice, however, this is almost impossible. Instead System Test receives a

"smear" of releases. There are several problems with this including:

1. Not all tests can be run on time due to missing functionality (i.e. development is behind

schedule),

2. Many (most) tests are run several (many) times on each revised release in the smear to verify that

fixes have not broken things that previously worked.

One way that AT&T has helped solve the regression testing and user simulation problems in the observed

products was by developing an automated testing system called GAMUT [LASS] that includes both
hardware and software. The GAMUT system uses computers and special hardware to automatically and

reproduclbly execute tests that simultaneously simulate many users of a telephone switch.

• During System Test, MRs are used to reports all bugs found. In fact, there is a lot of .MR "cycling"

where Mrs are filed by System Test, reponded to by Development, and returned to System Test for re-

testing. In some cases MRs acquire "child" MRs which are used to indicate problems in related sub-
systems or areas.

When a system passes System Test, not only is the tested code passed on, but a Factory Release

Document is also produced. It contains information about:

1. the MRs fixed and what they affected,

2. special procedures or workaround patches,
3. special installation instructions, if needed,

4. compatibility with previous hardware and software, and

5. controlled introduction history.

These items describe the major changes that the Field Support and manufacturing people need to know

about when producing and ser';-icing the new product.
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10. Field Support

Field Support is the section of the development process responsible for installation and maintenance

of a system. Field support has three substages called controlled introduction, scheduled availability, and

general availability. Field support interacts with Development, System Test, Manufacturing, and Market-

ing. This section will concentrate on the Controlled Introduction stage because it is most closely tied to

system development and the other (last) two stages are primarily expansion of production levels to accom-

modate full scale marketing.

10.1. Controlled Introduction

Controlled Introduction is like a beta test in the "classical" model of the software life cycle and maps

into the Qualification part of the AT&T life cycle in Figure 1. Controlled Introduction includes:

1. standard product for customer environments,

2. final technical evaluation of a new product,

3. evaluation of product preformance,

4. customer acceptance criteria,

5. identify necessary improvements, and

6. validate product support processes.

To accomplish these tasks, CI has several subprocesses: requirements and schedules, customer selec-

tion, implementation planning, customer briefings, product order and delivery, field support, and customer
evaluation.

Requirement8 and schedules are done in conjunction with Development, Project Mangement, Marketing,

and Manufacturing. It is here that the number and kinds of customer sites is chosen and the schedules for

testing various product feature is determined.

Customer selection is done based on the test requirements, customer needs and cooperation (want friendly

customers), and geographical location. Usually, controlled introduction is performed close to the develop-

ment area because it may be necessary to get development to examine and fix problems.

Implementation planning is part of the global project management work of developing CI milestones,

project/customer commitments, and making sure that both are met.

Customer briefings are used to ['orm a partnership with the customer so that CI can be as pleasant and

experience as possible for the customer. These briefings include discussions of the customers detailed needs

and schedules for when and how the system can be installed into the customers environment.

Product order and delivery is all the manufacturing processes necessary to build the customer's system.

This includes order processing, system customization, and quality control tests at the manufacturing site.

During CI, the various processes used for manufacturing are tested and reviewed.

Field support is complete customer installation including all components, wiring, administration, and

installation tests. It also includes problem identification, problem resolution, and customer traffic analysis

and system analyses.

Finally, customer evaluation surveys and interviews the customers about the systems features, operation,

performance, and documentation including user and administrator opinions. Statistical analysis of the

responsed is used to understand the strengths and weaknesses of the system and its support.

10,2. Scheduled and General Availability

Scheduled availability is an intermediate time period when Project Management, Manufacturing, and

National Product Scheduling carefully monitor and expand production facilities to handle the expected
market load.

General availability is the point at which the product is available simply by ordering it and having it

delivered in an expected time interval. The product, its documentation and support processes are complete
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and most services are provided following a standard procedure.

10.3. Tool Comments

Field Support currently has very few tools. There are tools for factory orders and some manufactur-

ing. There are also tools for processing some of the system performance statistics. But, there are few tools

for the scheduling and coordination of Field Support. Some of the difficulties are:

1. the large number of people that Field Support depends upon,

2. these people are scattered all over the U.S. and possibly the world,

3. there are so many changes that they occur almost continuously.

In other words, some large distributed system would be necessary and it is not easy to define exactly how is

should interact with the Field Support people.

11. Summary

This paper has been a summary of the AT&T software development life cycle. It is seen that basi-

cally a "waterfall" model is used. Each process in the life cycle has specific inputs and outputs, usually

documents or code. The life cycle differs from the waterfall model in some respects by having separation

between specification of customer features and internal architecture. Many groups have influence over

more than one process in the development of a process to provide checks and balances which promote a

more coherent and easy to understand product structure.

We have seen the that the organizational structure of AT&T is primarily by project, except for some

management and marketing type functions. It appears to work fairly well in keeping the technical exper-

tise focused on one entity while allowing management and marketing enough dissociation to make fair

decisions about the direction and coordination of a project.

While touring the life cycle, we have discussed the products of each process and how they are pro-

duced. We have also looked at some of the tools in use to help automate these processes. Even though we

only saw brief overviews, some strengths and weaknesses were described for most of these tools. Also,

some suggestions for capabilities of future tools were mentioned.

This observation has provided invaluable experience for research into automation of software

development from the development of program fragments through global tracking and high level manage-

ment. It has given the author much to think about.
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PRODUCT OVERVIEW AND RATIONALE



INTRODUCTION

Product Overview and Rationale

Our project planning software automates the COCOMO cost

estimation model. The software will also provide a project phase and

milestone analyzer which outputs estimates of dates for project

phases and due dates for appropriate milestones.

The use of this project planning software will reduce the errors

which are made when these cost estimates are calculated manually.

Also, the automation of the planning techniques will encourage

project managers to use the techniques.
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USING THE PROJECT SCHEDULING SOFTWARE



LOGGING ON

The user should begin by starting up the $9()00. The machine

ould already be on and all the user needs to do is turn the

brightness contr'ol knob to the right if it isn't already turned up.

The user- first must log on to the machine. This is done by

typing in the login the user has been assigned. Presumably, this is

the same as that which has been given to the students of CS327 which

is "cs327". The user should respond to the login prompt with the

following:

cs327 <or> cr = carriage return

The user should wait for" the system prompt which has the

following format before typing anything else:

cs327<x× >#:

where xx is the command line number.

The permissions for the present directory should also be set to

read/write�execute for all users. This is done by first moving to

the directory above the present one:

cd

Then the command

chmod 777 <directory name).

is issued. Finally, the user needs to move back to this directory

using the command

cd <directory name>
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LOADING PROOECT SCHEDULING SOFTWARE

Before going on the user needs to load the project scheduling

software. The following steps should be followed:

I) Insert the disk containing the project scheduling

software into disk drive. The disk is inserted with the

label facing left, the edge with the write protect notch

going in first. The notch will be in the lower half.

2) Then the following command should be entered:

tar xvfn /dev/rfdA ps

where A is the number of the disk drive in which the

disk containing the project scheduling software was

inserted. The drive on the left is O, the other is

drive I.

Once the program is loaded the user need only type:

ps

to enter the project scheduling software. At this point the

software will take control and the user will be prompted for

any other input.

The user can stop the software from running at any time by

hitting <ctrl>-c. However, hitting <ctrl>-c while the software is

saving the project values may cause errors in the output file. After

exiting the software the user Should save any work done on their disk

by following procedures listed under Saving Work and Logging Out.

i



NORMAL RUN

A normal run consists of:

i) Logging On

2) Entering Data

3) Reviewing Results

4) Saving Work and Logging Out

LOGGING ON

Logging on has been previously described in Section I°

The user should follow steps up to and including the invoking of the

software.

ENTERING DATA

The _irst item the user is prompted for is the function which the

user wants to perform. Figure I illustrates the menu. For a normal

run the user will choose option I -- to set up a new project. At any

time the user can hit the backspace key when responding to a prompt.

I

I
I
I
I

I

I
I
I
I

I

I
I

I
Welcome to the Project Scheduler

Select from:

Enter 1 to set up a new project

Enter 2 to retrieve old project values for manipulation

Enter function choice:

I
I
I
I

Fi gure I



I A1so,

!

!

each response to a prompt should be followed by a carriage

return. NOTE: The system will not continue until the carriage

return is typed.

Once this option is chosen; the user will first be prompted for- a

oject identifier _=-- shown in figure _°. The project identifer may

consist of any combination of clnaracters up to a total of 9.

I
I

I

Enter- project identifier

Figure 2

i Ne>:t the user will be prompted for the present date. The user's
response should be in the form of mm/dd/yy. NOTE: The system will

not continue until two slashes and a return have been entered. On

I the same screen, the user will next be prompted for the version

number -- which can be either of type real or integer. Finally., on

I the same screen (figure 3), the user will be prompted for the project

start date. The response again should be in the form of mm/dd/yy.

I Also, the software will not continue until two slashes and a carriage
turn have been typed in.

I
I

I

I

Enter date (mm/dd/yy):

Enter version number:

Enter estimated project start date (mm/dd/yy):

Figure 3

I

I

I

The system will then prompt for the project mode (figure 4). A

2 or 3 is entered depending on the mode of the project which is

either organic, semi-detached or- embedded, respectively.

Next, the system prompts for the estimate of KDSI. The range in

wlnich the response must fall is als0 presented (figure 5). If a

I



value is entered which does not fall within the range specified_ the

system will prompt again until a valid value is entered. NOTE: The

user may enter a number without a fractional part.
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I

I

I

I

Select from:

I = organic mode

2 = semi - detached mode

3 = embedded mode

Enter project mode:

Range for mode = 2.0K - 51 _.OK

Enter KDSI estimate:

Figure 4 Figure 5

The last input items which must be entered are the effort

multipliers. Each multiplier will be prompted for separately. An

example of the format of the screen for all multipliers is shown in

figure 6. An example of each screen is shown in Section VIII.

I
I
I

I
I

I
I

Enter Effort Multipliers

Product Attributes

REQUIRED SOFTWARE RELIABILITY

Range = 0.75 to 1.4

Enter I for nominal value

RELY:

Fi gure 6

i If an incorrect value is entered, the system will print an error
message and prompt again. NOTE: If an incorrect value is entered

three times_ the user will be exited from the software to the

I operating system and all values previous_ typed in will be lost.

After the last effort multiplier has been entered_ the system

I automatically begin calculating results and when finished thewiii

r'eview results menu (figure 7) will appear on the screen.

i

i



Enter- 1 to see input variables on the screen

Enter 2 to see Basic Project Profile on the screen

Enter 3 to see Activity Distribution by Phase on the screen

Errter 4 to see Project Milestone Calendar- on the screen

Enter 5 to save output in report format

Enter 6 to save project values

Enter- 7 to quit

Select from 1 - 7:

!
!
I

I
I

Fi gure 7

REVIEWING RESULTS

The review results menu as shown in figure 7 allows 'the user to

review the results calculated by the project scheduler, the user need

only enter the menu choice he desires.

Options 1 - 4 allow the user to review the reports described in

ction IV on the screen. The user need only type in the

desired option followed by a return. When the user is done examining

the report he has chosen, he types a carriage return to return to the

review results menu. Options 5, 6 and 7 are described in the next

section - Saving Work and Logging Out.

SAVING WORK AND LOGGING OUT

Option 5 of the review results menu should be chosen if the user

wants to print the reports on paper or save them on his disk. This

option stores the reports so that when the user leaves the project

scheduling software, he can use the ipr command to print the output

file. The following steps should be taken to do this:

I
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I GETTING PRINTOUT OF REPORTS

I
1) Choose option 5 from the review results menu.

I
I

I

2) Enter f i I ename. The system wi i i prompt for the f i iename

and user must respond to continue.

3) Review results menu will appear on the screen again and

option 7 should be chosen, if the user is ready to end

this session.

I
4) At system level type

I ipr fname

!

I
I

I
I

where fname is the filename previously entered witinin

the project scheduler.

Option 6 should be chosen from the review results menu,, if the

user v_ants to save the input values for later review and/or use for

running the project scheduler at a later time. Once option 6 is

chosen, the system will prompt for the filename. After entering the

filename the review results menu will appear again on the screen.

I_ the files created by the project scheduler are to be saved for

fLlture use the user must enter-:

I tar uvfn IdevlrfdA fname

I where A is the drive which the disk to write to resides and fname is
the file to be saved on disk:.

I

I
NOTE:

I will be

To l ogout the user need only type

Iogout

Be sure to save work on disk before typing logout or all work

lost.

I

I



ERROR MESSAGES

The only real error messages the user will get is while entering

input. The following is the type of input and what an error would

mean t]nat o(-curred while entering this type of input.

INPUT ERROR MEANING

Main function menu choice Choice not equal to i or 2

Project mode Mode entered not equal to I, 2 or 3

KDSI estimate Estimate entered not within range

specified

Effort multipliers Value entered not within range

specified

If for some reason another type of error occurs, the user should

•Pe <ctrl>-c. This will take the user back to the operating system

and the user can type

ps

to begin the project scheduler again. Possible causes for error:

I) File containing old project values is incomplete.

2) An invalid response was made to a prompt.

RESPONSE FORMATS

The following is a list of the input for the project scheduler

d the expected format of the user:s response:

I

I
I
I

I
I

I
I

I
I
I
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INPUT

Main function menu choice

Project identifier

EXPECTED FORMAT

Integer 1 or 2

Character string of length < 9

i

I

i

I

Date and start date

Version number-

Project mode

General form = mm/dd/yy

Integer followed by a slash

followed by another integer, slash

and a final integer

Real or integer number

Integer I, 2 or 3

I KDSI estimate Integer or real v&lue

I Effort multipliers Integer or real value

i Fi iename
Character string of length < 19

I
I

I
I

i

Review results menu choice Integer I, 2, 3, 4, 5, 6 or 7

Notes about responding to prompts:

I) Backspace may be used when entering response.

2) A carriage return must follow every response.

3) When consecutive carriage returns are entered, no values

will be given to these variables, so eventually the

program will crash.

I
I
I

4)

5)

If more than one character is typed for the mode or a

menu choice, the program will crash.

If invalid data is entered such as a character for" an

integer, it is converted to its integer equivalent.

I



REVIEWING PROJECT DATA

Reviewing project data is very similar to a normal run except for

two things:

!) The user is prompted for tlne filename winich the project

values are stored.

2) The user is prompted as to whether he wants change the

iisted value.

Figure 8 shows an example of what the screen looks like when the

option to change is made for the mode. NOTE: To change, the user

must enter a capital ¥ at the prompt. Anything else typed in is

considered a no.

Project mode = 1

Do you want to change (Y/N)? Y

Select from:

1 = organic mode

2 = semi-detached mode

3 = embedded mode

Enter project mode:

Figure 8
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REPORT FORMATS
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Report #I
DESCRIPTIVE PROJECT VALUES

e.

PROJECT IDENTIFIER:

VERSION NUMBER:

E5TIMATED PROJECT 5TARTING DATE:

ESTIMATED PROJECT LENGTH (WEEKS}:

PROJECT MODE:

KDSI ESTIMATE:

DATE

Product Computer Personnel

Attributes Attributes Attributes

RELY: TIME: ACAP:

DATA: STOR: AEXP:

CPLX: VIRT: PCAP:

TURN: VEXP:

LEXP:

Project

Attributes
_ o

MODP:

TOOL:

SCED:

MM:

TDEV:

PRODUCTIVITY:.

PROJECT AVERAGE FSP:

Report #2

QUANTITY

BASIC PROJECT PROFILE

MODE =

Total effort (MM}

|
i

I
i

Pl&ns and requirements

Product design

Programming

Decal-led design

Code and unit test

Integr&tion _nd tes_

Tot_Z schedule (months)

Plans and requirements

Product design

Programming

Integration and test

Average personnel CFSP}

Plans and requirements

Product design

Programming

Integration and test

Productivity (DSI/MM}

Code and'unit _es_ only (DSI/MM)

=.



Report #3

Activity

I

ACTIVITy DISTRIBUTION BY PHASE

Plans and

RequiremenCs.

Phase

Produce

Design Programming

Percen¢ FSP Percent FSP Percen¢ FSP

i
t

Integra¢ion

and Tes¢

RequirmmenCs Analgsis

Produce Design

Programming

Tes_ Planning

Veri_ica¢ion and

Valida$ion

Projec$ O_ice

CM/QA

Manuals

ToCal

Report #4

PROJECT IDENTIFIER:

VERSION NUMBER:

DATE:

REVIEW.

PROJECT MILESTONE CALENDAR

ESTIMATED PROJECT STARTING DATE:

ESTIMATED PROJECT LENGTH (WEEKS):

WORK PRODUCTS REVIEWED

i
t

UEEK # i

PRODUCT FEASIBILITY REVIEW

SOFTWARE REQUIREMENTS REVIEW

!

PRELIMINARY DESIGN REVIEW

CRITICAL DESIGN REVIEW

SOURCE CODE REVIEW

ACCEPTANCE TEST REVIEW

PRODUCT RELEASE REVIEW

PROJECT POST-MORTEH

t

SYSTEM DEFINITION

PROJECT PLAN

SOFTWARE REQU.IREMEt_TS SPECIFICATION

PRELIMINARY USER'S MANUAL

PRELIMINARY VERIFICATION PLAN

ARCHITECTURAL DESIGN DOCUMENT

DETAILED DESIGN SPECIFICATION

USER'S HANUAL

SOFTWARE VERIFICATION PLAN

WALKTHROUGHS & INSPECTIONS OF SOURCE CODE
ACCEPTANCE TEST PLAN

ALL OF ABOVE DOCUMENTS -"

PROJECT LEGACY
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Packaging Spectflcatlons

The Project Scheduling Software consists of four files of source code,

compute.c - This serves as the matn section of code. It co-ordinates the

calling of all of the other functions. It also contains the code to

compute the I_I, TDEV, Productlvltyw Project length, ProJect Average FSP,

FSP dlstrlbutlon, and M11estones.

tablemanlp.c - Thls flle of code co-ordlnates the accessing of the

reference table values and computes the Effort, Schedule, and Actlvlty

dlstrlbutlon output values.

In.c - Thls f11e contains the input and output code. The input code

co-ordlnates the interactive Input and f111s the globals Input program

values. It Is also In thls code that all readlng from old project f11es

or wrlttng to ftles (for storage of project values or output reports) Is

managed. The output portion of thts code co-ordinates the formatting of

the output reports.

defs.h - Thls f11e contains the declarations for all of the global

variables for the software.

The Project Scheduling Software Is compiled Into compute.o, table, anlp.o,

and In.o uslng the followlng command:

cc -o ps compute.c tablemanlp.c In.c -Im

The software Is then executed by typtng: ps
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Calculations used in the Project Scheduling software (PSS):

The PSS implements the Intermediate COCONO model as described In Software
Engineering Economics by Barry Boehm (1981). The following Is a description of
the equations and procedures used,

1) Intermediate COCOMO Nominal Effort Estimating Equations:

Development Mode Nominal Effort Equation

Organic
Semi-detached
Embedded

(MM)nom = 3.2(KDSI1"'1.05
(MM)nom = 3.0(KDSI)*'1.12
(l_l)nom = 2,8(KDSI)*'1.20

21MM = MM(nom) * (product of the 15 effort multlpllers) [rounded]

3) Basic and IntermedlateCOCOMO Schedule Estimating Equations:

Development Mode Schedule Equatlon

0 rgan t c
Semi-detached
Embedded

TDEV = 2.5(MM)**0.38 [rounded]
TDEV = Z,S(MM1**O,35 [rounded]
TDEY = 2,5(MM)**0,32 [rounded]

4) Productlvlty = (KDSI * 1000) / MM [rounded]

S) Project Average FSP = MM / ll)EV

6) Estimated project length =(time for the +
planning and
requirements phase)

(tdev * 4.331
[conversion of tdev to weeks]

7) Milestones: The week number assignments for each of the project phases are
calculated by: 1) converting to weeks (value * 4,33) the corresponding
values for the allotment of schedule time for the phase in the schedule
distribution and 21 creating a ttme ltne for the project by adding each
allotment of weeks to the sum of the allotments of weeks for the previous
phases, The work products are asslgned using the table of Reviews and
Milestones In the Phased Llfe-cycleModel from Fatrley (1985) Software
Engineering Concepts (page 421. This table Is presented In the appendix,
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8) Calculation of the Distribution Outputs:

8a) Effort Dlstrlbutlon= Each row In the Effort Distribution output is

calculated by multlplylngl_X and the appropriate percentage value from the

Effort Distribution Table. The appropriate percentage value Is found by

identifying the correct reference table using the mode and KDSI combination,

and then selecting the percentage value In the row that corresponds to the

activity value currently being calculated. If KDSI Is not an exact reference

table column value, interpolation Is performed to determine the percentage

value to be used.

8b) Schedule Distribution= Each row In the Schedule Distribution output

ts calculated by multiplying TDEV and the appropriate percentage value from the

Schedule Distribution Tableo The appropriate percentage value ts found by

Identifying the correct reference table using the mode and KDSI combination,

and then selecting the percentage value tn the row that corresponds to the

acttvlty value currently being calculated. If KDSI ts not an exact reference

table column value, Interpolation ts performed to determine the percentage

value to be used.

8c) Average Personnel (FSP) Distribution: Each row In the Average

Personnel (FSP) Distribution Is calculated by dlvtding the corresponding I_N

value from the Effort Dtstrtbutlon by the corresponding TDEV from the Schedule

Dlstrlbutlon.

8d) Activity Distribution by Phase: The Activity Distributions are

calculated using the Average Personnel (FSP) Distribution. Each of the four

values In the Average Personnel (FSP) Dtstrlbutton is expanded to show the

breakdown tn terms of percentage of personnel for that phase on each of the

eight project activities that occur in some percentage throughout the whole

project. Each Average Personnel (FSP) Distribution value ts multiplied by the

appropriate percentage value from the ProJect Acttvtty Distribution by Phase

Tables. The appropriate percentage value is found by Identifying the correct

reference table ustng the mode and KDSI combination, and then selecting the

percentage value tn the row that corresponds to the activity value currently

being calculated. Zf KDSI ts not an exact reference table column value,

Interpolation ts performed to detemtne the percentage value to be used.

I
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I

I DESCRIPTIVE PROJECT VALUES

PROJECT IDENTIFIER: testl

I VERSION NUMBER: i
ESTIMATED PROJECT STARTING DATE: 10124186

ESTIMATED PROJECT LENGTH (WEEKS): 110

i PROJECT MODE: 3KOSI ESTIMATE: 80.0

DATE" 5113186

I
I

I
I

Product

Attributes

RELY: 1.00

DATA: 1.00

CPLX: 1.00

Computer

Attributes

TIME: 1.00

STOR: 1.00

UIRT: 1.00

TURN: 1.00

MM:538.0

TDEV: 19.0

PRODUCTIVITY: 149

PROdECT AVERAGE FSP: 28.32

Personnel

Attributes

ACAP: 1.00

AEXP: 1.00

PCAP: 1.00

UEXP: 1.00

LEXP: 1.00

Project
Attributes

HODP: 1.00

TOOL: 1.00

SCED: 1.00

I
I

!
I

QUANTITY

BASIC PROJECT PROFILE

MODE = Embedded

Total effort (MM) 538. O0

J;.

I

Plans and requirements

Product design

I Programming
Detailed design

Code and unit test

I Integration and testTotal schedule (months)

Plans and requirements

I Product designProgramming

Integration and test

Average personnel (FSP)

I Plans _nd requirements
Product design

Programming

"ntegration and test

ductivitg (DSIIMM)

Code and unit test only (DSI/MH)

8.00¢

IB. 001¢

52.50¢

25.501L

27. OOY,

29. 507.

19.00

34. 001_

35. O0_

38.00_

27.00'_

2B. 32

23.53_

51. 437.

138. 167.

109.267.

149

"551

43.04

96.84

282.45

137.19

145.26

158.71

6.46

6.65

7.22

5.13

6.66

14.56

39.12

30.94



Activity

ACTIVITY DISTRIBUTION BY PHASE

Phase

Plans and Product

Requirements Design Programming

Integration

and Test

I

I
I

Percent FSP Percent

Requirements Analysis 45.00 3.00 10.00

Product Design 14.50 0.97 42.00

Programming 7.00 0.47 12.50

Test Planning 4.50 0.30 6.50

Veri;ication and

Validation 8.50 0.57 8.50

Project Of;ice 11.00 0.73 10.00

CM/QA 4.00 0.27 3.00

Manuals 5.50 0.37 7.50

FSP Percent FSP Percent FSP

1.46 3.00 1.17 2.00 0.62

6.12 6.00 2.35 4.00 1.24

1.82 55.00 21.52 42.00 12.99

0.95 6.50 2.54 4.00 1.24

1.24 10.50 4.11 24.00 7.43

1.46 6.50 2.54 7.50 2.32

0.44 7.00 2.74 9.00 2.78

1.09 5.50 2.15 7.50 2.32

I
I

I
I

Total 100 6.66 100 14.56 100 39.12 100 30.94

PROJECT IDENTIFIER: testl

VERSION NUMBER: 1

DATE: 5113186

REVIEW

PROJECT MILESTONE CALENDAR

ESTIMATED PROJECT STARTING DATE: 10/24/86

ESTIMATED PROJECT LENGTH (WEEKS|: 110

WORK PRODUCTS REVIEWED WEEK #

PRODUCT FEASIBILITY REVIEW SYSTEM DEFINITION 14

I

I

I
I

i

I
SOFTWARE REQUIREMENTS REVIEW

PRELIMINARY DESIGN REVIEW

CRITICAL DESIGN REVIEW

SOURCE CODE REVIEW

ACCEPTANCE TEST REVIEW

PRODUCT RELEASE REVIEW

PROJECT POST-MORTEM

PROJECT PLAN

SOFTWARE REQUIREMENTS SPECIFICATION 28

PRELIMINARY USER'S MANUAL

PRELIMINARY VERIFICATION PLAN

ARCHITECTURAL DESIGN DOCUMENT 42

DETAILED DESIGN SPECIFICATION 57

USER'S MANUAL

SOFTWARE VERIFICATION PLAN

WALKTHROUGHS & INSPECTIONS OF SOURCE CODE 73

ACCEPTANCE TEST PLAN 88

ALL OF ABOVE DOCUMENTS 110

PROdECT LEGACY 110

I

I
I
I
I
I
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GLOSSARY

activity distribution by phase - break-down of project average personnel (PAFSP)
required to perform each of 8 activities during each phase of the project

average personnel (FSP) distribution - break-down of project average personnel
(PAFSP)into numberof personnel required to complete each phase of the
project

cd - unix command to change directory

chmod - unix command to change read/write/execute permissions

cocomo - constructive cost model of software development cost estimation

descriptive project values - one of the output reports produced by PSS. Shows

all the values input by the user, and the basic cocomo values calculated by

the program: mm, tdev, productivity, and project average FSP

effort distribution - break-down of total effort (mm) into effort required to

complete each phase of the project

effort multiplier - value within a given range which represents the project's

rating in terms of one of 15 software cost drivers, such as complexity or

programmer ability

embedded mode - software which interacts directly with the hardware; corresponds

to systems programming

error message - a message printed on the screen by the PSS program indicating

that the user has entered an incorrect value

fsp - f_ull-time s_oftware _ersonnel

kdsi - thousand delivered source _nstructions; the anticipated size of the

project in terms of source code instructions

load - the process of copying the PSS program into the computer's main memory in

preparation for running the program

log on - the process of identifying yourself to the computer in order to be

admitted to the operating system

login - a password which identifies the user and is used to gain access to the

operating system; the PSS user should use the login cs327

logout - the command used to exit from the unix operating system after a PSS

session, after all work has been saved on disk using tar uvfn command

ipr fname - the unix system command used to obtain a paper copy of the PSS

program output; substitute the name of the file in which you saved the

output for fname

I
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milestone - a significant event such as the completion of a phase or an

important review in the life cycle of the software project; expressed as

the week number of the project by PSS

mm - the total amount of effort, in man-months, required to complete a software

project of a given mode, size and description

mode - the general category to which the user's project belongs: I = organic

(applications programs); 2 = seml-detached (utility programs); 3 = embedded

(systems programs)

organic mode -.programs which use an environment provided by a language

compiler; corresponds to applications programming

pafsp (project average fsp) - the average number of full-time software personnel

needed to staff a project of a given mode, size and description

prod(uctivity) - the number of delivered source instructions per man-month for a

project of given mode, size and description

project identifier - any combination of 9 or fewer characters which the user

chooses and enters to identify the project which he/she wishes to schedule

ps - the command used to invoke the PSS program to start it running

$9000 - the IBM computer system on which the Project Scheduler Software runs

schedule distribution - break-down of elapsed time (tdev) into time required to

complete each phase of the project

semi-detached mode - programs which provide processing environments and

sophisticated use of the operating system; corresponds to utility

programming

software cost driver - one of 15 factors which strongly influence the cost in

terms of time and money to complete a software development project (see

Appendix, Software Cost Driver Rating Reference Table I and II)

tar uvfn /dev/rfdA fname(s) - unix system command to save any files created when

running the PSS program; substitute the correct drive number (0 or i) for

A, and the name(s) of your file(s) for fname(s)

tar xvfn /dev/rfdA ps - the unix command used to tell the operating system to

load the PSS program in preparation for running the program; substitute the

correct drive number (0 or l) for A in the command

tdev - elapsed time, in months, required to complete a software project of a

given mode, size and description

unix - the operating system running on the IBM $9000

version number - a real or integer number chosen and entered by the user to

identify which version of a project he/she wishes to schedule

D
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INPUT SCREENS

i _ _ - . . . #.. t ,-_i.i_..

.oF_oo_-

" ' ._ •. h c;:.. 7 :. e" r d _",,". _. _. r n i ,=

_'" _ _-_" '_'a."L.{. ' _" ' "_ ' ' _i _ "'_

_7_.n'i.e,' ver sJ.on rl LI ql ,_,e I"

:ele,=_ _rom

' = organic mode

2 _ _e_:-,Je_ched mode
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I
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I
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;J r o d LI,= _ Au_ri_U_eS

;.a.nge = C,.;'30¢00 _o i _GGOOG

_"L'T-/" " 4'C_r' !_C_ " -P._ ' .p" ,..'-.

.':'ELY

En_eP E¢¢or'_ Mui, ":_,., .i_err=

Produ,:_ A%t,,_.',.bu _es

DATA _ASS S;ZE

Kange = 0.940000 _o 1.160000

-ATA.

*" - '4" _ ; '7,LI {'... , r: "S _ i. ;_ c :_

:'<anC, e : _) 7.'.,)0?.3 _.:: " ..55.'.,0.g0

Ei_%e:- " .P,.I'- nom!_] vm]!, _.

ORIGINAl; P:A-GE l_

OF POOR QUALITY



-r,a,_O= -= I h0n. 0h0 ;-,, _ "'Cn_0

• I ....

Compu _er _ __r .:bu ce_

:_.Ige = 1.30000.,3 ,;,a ,'.56=G,],3

-"-_i,_- !. #o- ,;o:_.i_.,_l. ,,_iL_e

E_,_e:- E:_erG Mul_iplier5

Compu _e," A_%ribu,.e._

,,._-:,,._,-,,_'IAC_4INE UOLt-TILITY

Range = 0.870000 _o 1.300000

,JIRT.

ORIGINAL PAGE _S

OF POOR QUALITy
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I
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I

_.--,_, ,.I_'_F_ --.,,-_._, .-,,-_j_ _._

TUP, N

P__," _,a n nel A_ _r ibu_es

ACAP.

EnG_,- E_¢i_r-L M_., _i:.:lie:...:

Personnel A_iribu les

APrLICAT_ONS EXPEQIENCE

_ange = 0.8_0000 _o i._?O000

_:"t@r I _or n,_minR! ,,_lu_

R.:,n_._. = ,).7880._') ,o 1._,":OOOO

IN:)OIIQUALITY



VI:!T'J- "_. :-_--'P'-!T ''m _-""-.,7-- .....

TT ,,e: _ i '..,," :m:,_i=:::!. v_;! _

-Z.',_r E::.:.-, i: ML, l%ipli,mrm

_:ersonnel A__rlbu _-es

r.,,...C:" .... ,.... .-.:...-.;_ ETYP.rc_I.'J;CE

":-r._..... ? _SP_,_ ;,m I 1.4000t)

::-;,{.÷r' l ?¢'- n_.mi--',. ,al..{e.

,_ E.(,- .

Projec_ A%_ribu_e5

USE OF MODERN PROGrAMMiNG PR_CT?.'.'-_S

Range = O.B200OO _o 1.$40"00,-,

E'n:_e," 1 eer n_2minal v_.]ue

_4Or'p

En_e:- _?or_, Mulcipliers

--'rojec_, A%%ribu%es

;:;,_,_,_,: - G E,30300 _,:, 1,2400C0

ORIGINAE PAGE IS

OF POOR QUALITY
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ORIGINA/.; PAGE I8

OF POOR QUALTTy

-:EQUI_:E,Z) DEL'E'L-PM_':T 5CI-'.ED'JLE

Range = 1.1,.30,300 _.,o 1.230000

En,.er I fc_ no_ainal v_Iu-.

F._CED:
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I DPJGINAu PAGE IS

| " .OF POOR Q,T_T._Ty

I
Sodom Cost D_er Ratings

I Ratings

Cost OfNer Very Low Low. Nomimd HKJh Very High Extra High

I Product attributesRELY Effect: s_jm in- Low. easily recov- Moderate. recover- High financial
convenience _able losses able Iones loss

DATA _ < 10 1040< 100 Io0.D< 1000I-'rog. DSI
See TaI_ 8-4GR.X

TIME ,_ 50% use of avail- 70%

ad_e_
t=ne

STOR ,; 50% uae of avii- 70%

VIRT Maior change or. I_. 6 montdt= Mawr:. 2 montll
my 12 rnonms Min_. 2 wIIks Mino_. 1 wuk
Min_. 1 monm

TURN _ Avorage llmlmmund 4-12 hours
<4 hOum

• ,,.sonn_ l£1n1_utes
ACAP
AEXP

PCAP
VEXP

t.EXP

_m
MOOP
TOOL

I

I
I
I

I
I

I
I

_smp,,c,,vk. 3sm_ 50m p.e=enm, 7Sm_
,r.,4 _ _o 1)_m" 3ymn_ 6m

peMn=
15th pen:ee=lo, 35m percentile 55m i_m=emile. 75m
=_1 rnon_ expe- 4 months 1 yqmr 3m

hlcce

=;I monlh aq)e- 4 monlltm lyow 3m
,wnce

No,s= Oooming m Smnem
8==¢ mk:mlxo- Bmc ntni Ioo_ Olk: nt_/mmd

ces=_ too_ tools

GMtmqll tree

Strong mmd Wo-
om=,mg.
rut Ioo_I

130%SCED 75% of _ 85% |00%

Risk to human Me

>1000

85%

85%

Uaioc2 weeks
M_toc2 d_s

:>12 hours

somm
12ymm

somm

_tlSO

Addmq,m_

docummmltion
to_s

160%

95%

95%

I
i
I
i

Software Cost Driver Rating Reference Table I.
(Boehm, 1981 )
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Software Development Effort Multipliers

I
I
I
I

I
I

Ralings

Very Very Extra

Cost Drivers Low Low Nominal High High High I
Product Attributes

RELY Required software reliability .75 .88 1.00 1.15 1.40

DATA Data base size .94 1.00 1.08 1.16

CPLX Product complexity .70 .85 1.00 1.15 1.30

Computer Attributes

TIME Execution time constraint 1.00 1.11 1.30

STOR Main storage constraint 1.00 1.06 1.21

VIRT V'wtual machine volatility. .87 1.00 1.15 1.30

TURN Computer turnaround time .87 1.00 1.07 1.15

Personnel Attributes

ACAP Analyst capability 1.46 1.19 1.00 .86 .71

AEXP Applications _ 1.29 1.13 1.00 .91 .82

PCAP Programmer capability 1.42 1.17 1.00 .86 .70

VEXP Virtual mactWm experience- 1.21 1.10 1.00 .90

LEXP Programming language expehence 1.14 1.07 1.00 ._3

ProiectAUr,1)utes
MO{_ Use of moclem programming Waclic_ 1.24 1.10 1.00 .91 .82

TOOL Use of software tools 1.24 1.10 1.00 .91 .83

SCED Required d_ schedule 1.23 1.08 1.00 1.04 1.10

1.65

1.66

1.56

I

I
I
I

I
• For a gmmn sOiltt,,Im I=_OdUCt, Ihe und_ vietmii machine i= N compline of hld_wQ
D6MS, e¢.) it ¢al= on to acmmpi_ its lasl_

Software Cost Driver Rating Reference Table II.

(Boehm, 1981 )
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Project Activity Distribution by Phase: Organic Mode

Plans and Integral=on

Phase Requirements Product Design Programming and Test

Product Size S I M L S I M L S I M L S I M L

Overall Phase Percentage 6 16 68 65 62 59 16 19 22 25

Activity percentage

Requirements analysis 46 15 5 3

Product design 20 40 10 6

Programming 3 14 58 34

Test planning 3 5 4 2

Verification and validation 6 6 6 34

Project office 15 11 6 7

CM/QA 2 2 6 7

Manuals 5 7 5 7

Project Activity Distribution by Phase: Semidetached Mode

Ptansand =ntegrabon

_'_85e _:_uwemen_ ProductOesmj_ _Ttmm_ ancITes_

ProOu¢lStze 5 I M L VI.. S I M L VL S I M L VL S I M L VL

OverallPt_esePercent_Kje 7 7 7 7 7 17 17 17 17 17 64 61 58 55 52 19 22 25 28 31

AchvdyOercentage
Reou_ementsanimus
Productdesxjn
Pro_'amn'.ng
Test plannmg
Verificationand vel_lstm_
Proie¢! office
CMIQA
Manuals

48 47 46 46 44 !2.512.512.512.S 12.5
16 16.517 17.518 41 41 41 41 41
2,5 3.5 4.5 S,S 6.5 12 12.513 13,514
2.5 3 3.5 4 4.5 4.5 S 5.5 6 6.5
6 6,5 7 7.5 S 6 6.6 7 7.5 6

1S.S 14.513.512.511.5 13 12 11 16 9
3.5 3 3 3 2.5 3 2.5 2.S 2.5 2
6 6 5.5 S 5 8 8 7.5 7 7

4 4 4 4 4 2.5 2.S 2.5 2.5 2,5
8 8 8 8 8 5 S 5 S 5

56.5 56.5 56.5 56.5 56.5 33 35 37 3g 41
4 4.5 5 S,5 6 2.5 2.5 3 3 3.5
7 7.5 6 5,5 g 32 31 29,6 26.5 27
7.5 7 6.5 6 5,5 8,5 $ 75 7 6.5
7' 6.5 6.5 6.5 6 0.5 5 8 8 7.5
6 6 S.S 5 5 e 8 7.S 7 7

Project Activity Distribution by Phase: Embedded Mode

Plans and |ntegrat_on

Phase Requirements Product Design Programming and Test

Product Size S I M L VL S I M L VL S I M L VL S I M L VL

Overall Phase Percentage 8 8 8 8 8 18 18 18 18 18 60 57 54 51 48 22 25 28 31 34

Activity percentage

Requirements analysis

Product design

Programming

Test planning

Verification and validation

Project office

CM/QA

Manuals

50 48 46 44 42

12 13 14 15 16

2 4 6 810

234 56

6 7 8 9 10

16 14 12 10 8

5 4 4 4 3

7 7 6 5 5

10 10 10 10 10

42 42 42 42 42

10 11 12 13 14

4 5 6 7 8

6 7 8 9 10

15 13 11 9 7

4 3 3 3 2

9 9 8 7 7

33333

66666

55 55 55 55 55

45678

89101112

98765

87776

77655

2 2 2 2 2

4 4 4 4 4

32 36 40 44 48

3 3 4 4 5

3O 28 25 23 20

10 9 8 7 6

10 9 9 9 8

9 9 8 7 7

Reference tables used to calculate the activity distributions.

(Boehm, 1981)
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